Low-dose radiation ameliorates PM2.5-induced lung injury through non-canonical TLR1/TLR2-like receptor pathways modulated by Akkermansia muciniphila.

Ecotoxicol Environ Saf

NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin 130021, PR China. Electronic address:

Published: January 2025

Exposure of PM2.5 can cause different degrees of lung injury, which is referred with inflammatory response. Some evidences showed that low-dose radiation (LDR) induces hormesis in immune, however, it is unknown if LDR ameliorates the PM2.5-induced lung injury. Additionally, gut microbiota and inflammation are crucial in lung injury and the health benefits of LDR through gut microbiota need further exploration. Here, we aim to investigate the impact of LDR on PM2.5-induced lung injury in vivo and in vitro, and elucidated the potential mechanisms of anti-inflammation activated by gut microbiota. We observed that LDR ameliorated the lung damage induced by PM2.5 in mice. Additionally, after PM2.5 exposure, M1 polarization of macrophages in alveolar lavage fluid and Th1 polarization in spleen increased, pro-inflammatory cytokines (IL-1, IL-6 and TNF-α) increased and anti-inflammatory cytokines (IL-4, IL-10 and TGF-β) decreased in lung and serum. LDR could deteriorate the changes described as above. Intriguingly, Akkermansia muciniphila (Akk) differed most significantly in the gut microbiota of mice. Notably, PM2.5 activated the Toll-like receptors-induced MyD88/NF-κB pathways to mediate the pro-inflammation, and LDR could inhibited the pathway. However, the TLR1 and TLR2 continuously increased after LDR, indicating the downstream non-canonical TLR1/TLR2 pathway of Akk was activated to blunt the pro-inflammation of PM2.5. Our results strongly indicate that LDR-induced activation of gut Akk-dependent non-canonical TLR1/TLR2-like receptor pathway ameliorates lung injury and inflammation resulted from PM2.5.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2024.117625DOI Listing

Publication Analysis

Top Keywords

lung injury
24
gut microbiota
16
pm25-induced lung
12
low-dose radiation
8
ameliorates pm25-induced
8
lung
8
non-canonical tlr1/tlr2-like
8
tlr1/tlr2-like receptor
8
akkermansia muciniphila
8
ldr
8

Similar Publications

Lateral decubitus: its influence on hemodynamic and respiratory function during retroperitoneal robotic assisted laparoscopic pyeloplasty (R-RALP) in children.

J Robot Surg

January 2025

Department of Pediatric Anesthesia and Intensive Care, Necker-Enfants Malades University Hospital, AP-HP Centre, Université Paris Cité, 149, Rue de Sèvres 75015, Paris, France.

Retroperitoneal robotic-assisted laparoscopic pyeloplasty (R-RALP) is the commonest urologic procedure performed in children, entailing retroperitoneal CO2 insufflation and lateral decubitus, whose effects on cardiopulmonary variables are poorly known. We, therefore, studied hemodynamic and respiratory changes due to CO2 insufflation and lateral decubitus in children undergoing R-RALP and their effects on regional tissue oxygenation. Between 1/2021 and 7/2024, children affected by ureteropelvic joint obstruction (UPJO) underwent a pyeloplasty by R-RALP at Necker Enfants Malades Hospital (Paris, France), using a standardized surgical technique and a lung-protecting anesthetic protocol aimed to prevent hypercarbia.

View Article and Find Full Text PDF

The aim of this study was to reveal the mechanism of cold stimulation (CS)-bronchial epithelial cells (BECs) derived exosomes (CS-BECs-exo) aggravated sepsis induced acute lung injury (SALI). CS-BECs-exo were separated by differential centrifugation and were characterized. Proteomics, immunoprecipitation, and RAGE knockout (RAGE) mice were used to investigate the mechanism of CS-BECs-exo aggravated SALI.

View Article and Find Full Text PDF

Intraoperative FiO and risk of impaired postoperative oxygenation in lung resection: A propensity score-weighted analysis.

J Clin Anesth

January 2025

Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA. Electronic address:

Study Objective: To assess whether, in a lung resection cohort with a low probability of confounding by indication, higher FiO is associated with an increased risk of impaired postoperative oxygenation - a clinical manifestation of lung injury/dysfunction.

Design: Pre-specified registry-based retrospective cohort study.

Setting: Two large academic hospitals in the United States.

View Article and Find Full Text PDF

Acute lung injury i.e. ALI and its serious form acute respiratory distress syndrome (ARDS) are incurable medical conditions associated with significant global mortality and morbidity.

View Article and Find Full Text PDF

Study Design: Experimental Animal Study.

Objective: To continue validating an antibody which targets an epitope of neurofilament light chain (NF-L) only available during neurodegeneration and to utilize the antibody to describe the pattern of axonal degeneration 10 days post-unilateral C4 contusion in the rat.

Setting: University of Florida laboratory in Gainesville, USA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!