The phytotoxic nature of Ozone (O) has been well documented in a number of scientific literatures during the last few decades. Although there are sufficient studies related to O impact assessment studies on crop plants and tree species, studies pertaining to O effects on medicinal plants are comparatively sparse. During the recent years, the mitigation strategies for management of O stress in plants have also assumed paramount significance. The present study sought to explore the combined impact of soil nitrogen (N) amendments and O doses on morphological and physiological responses, and metabolite profile of lemongrass, an aromatic medicinal plant. The experiment utilised three levels of inorganic soil N amendments within Open Top Chambers, subjected to ambient (A) and two elevated O doses. For each O treatment, control was also maintained, wherein no N amendments were done. The objective of the study was to study the pattern of allocation of carbon pool towards biomass accumulation and secondary metabolite production under N amendments and O exposure conditions in lemongrass. The results of the physiological traits clearly suggest the resurgence of the photosynthetic machinery of O exposed lemongrass. The improved response of the carbon fixation processes upon N amendments resulted in supplemented carbon pool, diverting it towards increased biomass accumulation and yield of lemongrass, which was depreciated under O stress. This study demonstrates that N amendments in O stressed lemongrass enhance bioactive compound production, and sustain yield. Further researches are required to establish optimal N doses under varying O conditions, potentially advancing pharmaceutical applications of O exposed medicinal plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.137016 | DOI Listing |
BMC Nephrol
January 2025
Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
Background: The prevalence of chronic kidney disease (CKD) is estimated to be about 13.4% worldwide. Studies have shown that CKD accounts for up to 2% of the health cost burden.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Laboratory of Ecotoxicology, Centre of Advanced Studies, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India. Electronic address:
The phytotoxic nature of Ozone (O) has been well documented in a number of scientific literatures during the last few decades. Although there are sufficient studies related to O impact assessment studies on crop plants and tree species, studies pertaining to O effects on medicinal plants are comparatively sparse. During the recent years, the mitigation strategies for management of O stress in plants have also assumed paramount significance.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Centre for Environmental Studies, Department of Civil Engineering, College of Engineering Guindy, Anna University, Chennai, 600 025, India.
Landfill biomining is indeed a promising eco-friendly approach to sustainably manage and reclaim old dumpsites. Soil like fractions of < 8-10 mm size, also known as bioearth or good earth constitute a substantial part of the legacy waste. Detailed characterization is necessary to meet regulatory standards for the safe use of bioearth and minimize its environmental and human health impacts upon reuse.
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2024
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; Key Laboratory of Mountain Surface Process and Ecological Regulation, Chinese Academy of Sciences, Chengdu 610041, China. Electronic address:
Soil acidification poses a significant threat to agricultural productivity and ecological balance. While lime is a common remedy, it can have limitations, including nutrient deficiencies and potential soil compaction. Therefore, exploring alternative and sustainable amendments is crucial.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
Constructed wetlands (CWs) are a cost-effective, efficient, and long-term wastewater treatment solution in various countries. The efficacy and performance of constructed wetlands are greatly influenced by the substrate. Recently, biochar as a substrate, along with sand and gravel in constructed wetlands, has gained importance due to its various physical, chemical, and biological properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!