A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exploring machine learning tools in a retrospective case-study of patients with metastatic non-small cell lung cancer treated with first-line immunotherapy: A feasibility single-centre experience. | LitMetric

Background: Artificial intelligence (AI) models are emerging as promising tools to identify predictive features among data coming from health records. Their application in clinical routine is still challenging, due to technical limits and to explainability issues in this specific setting. Response to standard first-line immunotherapy (ICI) in metastatic Non-Small-Cell Lung Cancer (NSCLC) is an interesting population for machine learning (ML), since up to 30% of patients do not benefit.

Methods: We retrospectively collected all consecutive patients with PD-L1 ≥ 50 % metastatic NSCLC treated with first-line ICI at our institution between 2017 and 2021. Demographic, laboratory, molecular and clinical data were retrieved manually or automatically according to data sources. Primary aim was to explore feasibility of ML models in clinical routine setting and to detect problems and solutions for everyday implementation. Early progression was used as preliminary endpoint to test our algorithm.

Results: Out of 123 patients, 106 were included, 52/106 (49 %) had disease progression or died within 3 months of start of ICI. Early progression correlated with increased neutrophil percentage (>80 % of white blood cells), neutrophil/lymphocyte ratio (≥8) and lower-range PD-L1 status (<70 %) at baseline, which was consistent with literature. Automated ML (AutoML) models run on our dataset reached precision scores around 80 %, with Voting Ensemble emerging as best performing model, while white-box models (such as Shapley Additive exPlanations) provided better explainability. In all AutoML models, laboratory features were the top selected features, whilst clinical ones needed more pre-processing before gaining relevance, which was consistent with different data extraction (automatic versus manual) and missing data rates.

Conclusions: ML models' application is feasible in clinical practice and can trustworthily predict early progression during first-line ICI for metastatic NSCLC. Solving pre-analytical issues is key for future improvement, focusing on automatic tools for data extraction, collection and explainability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lungcan.2024.108075DOI Listing

Publication Analysis

Top Keywords

machine learning
8
lung cancer
8
treated first-line
8
first-line immunotherapy
8
clinical routine
8
early progression
8
exploring machine
4
learning tools
4
tools retrospective
4
retrospective case-study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!