A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Catalytic and Asymptotic Equivalence for Quantum Entanglement. | LitMetric

AI Article Synopsis

  • Entanglement is essential for quantum information processing, but manipulating it effectively remains difficult due to noise and the challenge of obtaining highly entangled pure states.
  • Many techniques exist for distilling these states from noisy versions, often requiring multiple copies, which applies to tasks like quantum teleportation and cryptography.
  • The study shows that using an entangled state as a catalyst for single-copy manipulations offers a powerful alternative, revealing connections between asymptotic and catalytic methods, and emphasizing the role of correlations without improving the distillation rate.

Article Abstract

Entanglement is a fundamental resource in quantum information processing, yet understanding its manipulation and transformation remains a challenge. Many tasks rely on highly entangled pure states, but obtaining such states is often challenging due to the presence of noise. Typically, entanglement manipulation procedures involving asymptotically many copies of a state are considered to overcome this problem. These procedures allow for distilling highly entangled pure states from noisy states, which enables a wide range of applications, such as quantum teleportation and quantum cryptography. When it comes to manipulating entangled quantum systems on a single copy level, using entangled states as catalysts can significantly broaden the range of achievable transformations. Similar to the concept of catalysis in chemistry, the entangled catalyst is returned unchanged at the end of the state manipulation procedure. Our results demonstrate that despite the apparent conceptual differences between the asymptotic and catalytic settings, they are actually strongly connected and fully equivalent for all distillable states. Our methods rely on the analysis of many-copy entanglement manipulation procedures which may establish correlations between different copies. As an important consequence, we demonstrate that using an entangled catalyst cannot enhance the asymptotic singlet distillation rate of a distillable quantum state. Our findings provide a comprehensive understanding of the capabilities and limitations of both catalytic and asymptotic state transformations of entangled states, and highlight the importance of correlations in these processes.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.133.250201DOI Listing

Publication Analysis

Top Keywords

catalytic asymptotic
8
highly entangled
8
entangled pure
8
pure states
8
entanglement manipulation
8
manipulation procedures
8
entangled states
8
entangled catalyst
8
entangled
7
states
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!