Pump-probe response of the spin-orbit coupled Mott insulator Sr_{2}IrO_{4} reveals a rapid creation of low-energy optical weight and suppression of three-dimensional magnetic order on laser pumping. Postpump there is a quick reduction of the optical weight but a very slow recovery of the magnetic order-the difference is attributed to weak interlayer exchange in Sr_{2}IrO_{4} delaying the recovery of three-dimensional magnetic order. We suggest that the effect has a very different and more fundamental origin. Combining spatiotemporal mean field dynamics and Langevin dynamics on the photoexcited Mott-Hubbard insulator, we show that the timescale difference is not a dimensional effect but is intrinsic to charge dynamics versus order reconstruction in a correlated system. In two dimensions, we obtain a short, almost pump-fluence-independent timescale for charge dynamics, while recovery time of magnetic order involves domain growth and increases rapidly with fluence. Apart from addressing the iridate Mott problem, our approach can be used to analyze phase competition and spatial ordering in superconductors and charge ordered systems out of equilibrium.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.133.256501DOI Listing

Publication Analysis

Top Keywords

magnetic order
12
dynamics photoexcited
8
mott insulator
8
optical weight
8
three-dimensional magnetic
8
charge dynamics
8
dynamics
5
distinct charge
4
charge spin
4
recovery
4

Similar Publications

Assessing myocardial viability is crucial for managing ischemic heart disease. While late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) is the gold standard for viability evaluation, it has limitations, including contraindications in patients with renal dysfunction and lengthy scan times. This study investigates the potential of non-contrast CMR techniques-feature tracking strain analysis and T1/T2 mapping-combined with machine learning (ML) models, as an alternative to LGE-CMR for myocardial viability assessment.

View Article and Find Full Text PDF

Magnetic nanoparticle modified moss Biochar: A novel solution for effective removal of enrofloxacin from aquaculture water.

J Environ Manage

January 2025

Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, PR China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081, Wuxi, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000, Beijing, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, PR China. Electronic address:

The presence of residual antibiotics in water constitutes a potential threat to aquatic environments. Therefore, designing environmentally friendly and efficient biochar adsorbents is crucial. Aquaculture by-product moss (bryophyte) was transformed into biochar, which can eliminate antibiotics from wastewater through adsorption.

View Article and Find Full Text PDF

Efficient removal of direct dyes and heavy metal ion by sodium alginate-based hydrogel microspheres: Equilibrium isotherms, kinetics and regeneration performance study.

Int J Biol Macromol

January 2025

Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266100, China; Key Laboratory of Ocean Observation and Information of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China. Electronic address:

Improving the adsorption capacity of materials for pollutants by means of modification is an important direction in the research of water treatment technology. To improve the applicability of sodium alginate composites in the field of adsorption, magnetic sodium alginate-based hydrogel microsphere adsorbent material FeO@SA/PEI-Fe (FSPF) was synthesized in a single step by using polyethyleneimine grafting modification of sodium alginate by sol-gel method. The material was used for the removal of direct blue GL (DB 200) and direct date red B (DR 13) from simulated wastewater, as well as Cu(II) and Pb(II) from simulated wastewater with heavy metal ions.

View Article and Find Full Text PDF

Cefixime (CFX) is a potent antibiotic against gram-positive and gram-negative bacteria that resists degradation and typical removal procedures. This research aimed to synthesize a modified AgCuFeO@GO nanoparticle electrode with anchored MnO for removing CFX by three-dimensional electrochemical oxidation. The physical and chemical characteristics of the nanocomposite were evaluated using various techniques, including FESEM, XRD, EDS-mapping, FTIR, BET, VSM, and TGA.

View Article and Find Full Text PDF

Anomalous and large topological Hall effects in β-Mn chiral compound Co6.5Ru1.5Zn8Mn4: electron electron interaction facilitated quantum interference effect.

J Phys Condens Matter

January 2025

Condensed Matter Physics, Saha Institute of Nuclear Physics, Sector 1, Block AF, Bidhannagar, Kolkata 700 064, Kolkata, West Bengal, 700064, INDIA.

β-Mn-type chiral cubic CoxZnyMnz (x + y + z = 20) alloys present a intriguing platform for exploring topological magnetic orderings with promising spintronic potential. This study examines the magnetotransport properties of Co6.5Ru1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!