Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Oxylipins, diverse lipid mediators derived from fatty acids, play key roles in respiratory physiology, but the contribution of lung structural cells to this diverse profile is not well understood. This study aimed to characterize the oxylipin profiles of airway smooth muscle (ASM), lung fibroblasts (HLF), and epithelial (HBE) cells and define how they shift when they are exposed to stimuli related to contractility, fibrosis, and inflammation. Using HPLC-MS/MS, 162 oxylipins were measured in baseline media from cultured human ASM, HLF, and HBE cells as well as after stimulation with modulators of contractility and central regulators of fibrosis/inflammation. At the baseline, ASM and HLF cells had the most similar oxylipin profiles, dominated by oxylipins from cytochrome P450 (CYP450) epoxygenase metabolites. TGFβ stimulation of HLF suppressed CYP450-derived oxylipins, while ASM stimulation increased prostaglandin production. HBE showed the most distinct baseline profile enriched with cyclooxygenase (COX)-derived oxylipins. TGFβ stimulation of HBE increased the level of several oxylipins from CYP450 epoxygenases. These findings highlight the importance of CYP450 oxylipins, which are relatively unexplored in the context of respiratory physiology. By resolving these oxylipin profiles, we enable future respiratory research to understand the function of these oxylipins in regulating physiology, especially in the context of modifying contraction and inflammation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jproteome.4c00775 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!