Rain cracking compromises quality and quantity of sweet cherries worldwide. Cracking susceptibility differs among genotypes. The objective was to (1) phenotype the progeny of a cross between a tolerant and a susceptible sweet cherry cultivar for cuticle mass per unit area, strain release on cuticle isolation, cuticular microcracking and calcium/dry mass ratio and (2) relate these characteristics to cracking susceptibilities evaluated in laboratory immersion assays and published multiyear field observations. Mass of the dewaxed cuticle per unit area and strain release upon cuticle isolation were significantly related to cracking susceptibility in lab or field. Cuticular microcracking in the stylar end region as indexed by infiltration with acridine orange was more severe in susceptible than in tolerant genotypes and significantly correlated with susceptibility to cracking in lab and field. The Ca/dry mass ratio was lower (-8%) for susceptible than for tolerant genotypes. Fruit that cracked early had less Ca than those that cracked later. Only the Ca/dry mass ratio of the stylar end region was significantly correlated with cracking susceptibility in the field. Based on stepwise regression analyses microcracking of the cuticle accounted for most of the cracking susceptibilities in field and lab (partial r2 = 0.331 to 0.338 for field vs. r2 = 0.326 to 0.453 for lab). The variability in cracking susceptibility accounted for increased to a r2 = 0.571 (lab) when adding mass of dewaxed cuticle, up to r2 = 0.421 (field) when adding the Ca/dry mass ratio in the stylar end region or up to r2 = 0.478 (field) when entering the strain release on isolation into the model. A protocol for phenotyping is suggested that allows larger progenies to be phenotyped for microcracking, DCM mass and strain release.

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0316637PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698392PMC

Publication Analysis

Top Keywords

cracking susceptibility
20
strain release
16
mass ratio
16
stylar region
12
ca/dry mass
12
cracking
11
susceptible sweet
8
sweet cherry
8
mass
8
unit area
8

Similar Publications

Rain cracking compromises quality and quantity of sweet cherries worldwide. Cracking susceptibility differs among genotypes. The objective was to (1) phenotype the progeny of a cross between a tolerant and a susceptible sweet cherry cultivar for cuticle mass per unit area, strain release on cuticle isolation, cuticular microcracking and calcium/dry mass ratio and (2) relate these characteristics to cracking susceptibilities evaluated in laboratory immersion assays and published multiyear field observations.

View Article and Find Full Text PDF

Magnesium plays an important role in the hardening mechanism of aluminum alloys, but sensitisation-induced intergranular corrosion cracking limits the widespread use of aluminum alloy in equipment. For on-site quantitative assessment of sensitisation in 5-series aluminum alloys, a laser-induced plasma imaging technique is proposed, which evaluates the degree of aluminum alloy sensitisation by obtaining images of the plasma formed by laser ablation of aluminum alloys, and then classifying and quantifying the images using a residual network. Compared to EMAT, XRD, ECT and LIBS techniques, the sample surface only needs to be polished, does not consume chemical reagents and is not affected by the shape and thickness of the workpiece, which provides higher quantitative accuracy, stability and detection efficiency.

View Article and Find Full Text PDF

Thermal cracking is one of the serious issues that deteriorates the processibility of laser powder bed fusion (LPBF) high-strength aluminum components. To date, the effects of processing parameters on crack formation are still not well understood. The purpose of this study is to understand the correlation between the thermal cycle and the hot cracking during LPBF of Al-Cu-Mg-Mn alloys.

View Article and Find Full Text PDF

Exploring different effects of biofilm formation and natural organic matter adsorption on the properties of three typical microplastics in the freshwater.

Sci Total Environ

December 2024

College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China; College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China. Electronic address:

Microplastics entering the aqueous environment are susceptible to the surrounding environmental processes, including biofilm formation and natural organic matter (NOM) adsorption, which significantly alters their properties and environmental fate. In this study, polyethylene (PE), polyvinyl chloride (PVC) and polyethylene terephthalate (PET) microplastics were respectively incubated in the untreated and disinfected freshwater to investigate the different effects of biofilm formation and only NOM adsorption on the properties of microplastics. The results showed that the total amount of fouling biomass driven by biofilm formation was markedly higher than that of NOM adsorption.

View Article and Find Full Text PDF

Tomato (Solanum lycopersicum L.), one of the most widely grown vegetable crops in the world, faces cracking problems before and after harvest. Fruit cracking reduces the commercial value and seriously affects the economic performance of the fruits by affecting the appearance and quality of the fruit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!