The TRAMP complex contains two enzymatic activities essential for RNA processing upstream of the nuclear exosome. Within TRAMP, RNA is 3' polyadenylated by a subcomplex of Trf4/5 and Air1/2 and unwound 3' to 5' by Mtr4, a DExH helicase. The molecular mechanisms of TRAMP assembly and RNA shuffling between the two TRAMP catalytic sites are poorly understood. Here, we report solution hydrogen-deuterium exchange data with thermodynamic and functional assays to uncover these mechanisms for yeast TRAMP with Trf4 and Air2 homologs. We show that TRAMP assembly constrains RNA-recognition motifs that are peripheral to catalytic sites. These include the Mtr4 Arch and Air2 zinc knuckles 1, 2, and 3. While the Air2 Arch-interacting motif likely constrains the Mtr4 Arch via transient interactions, these do not fully account for the importance of the Mtr4 Arch in TRAMP assembly. We further show that tRNA binding by single active-site subunits, Mtr4 and Trf4-Air2, differs from the double active-site TRAMP. TRAMP has reduced tRNA binding on the Mtr4 Fist and RecA2 domains, offset by increased tRNA binding on Air2 zinc knuckles 2 and 3. Competition between these RNA-binding sites may drive tRNA transfer between TRAMP subunits. We identify dynamic changes upon TRAMP assembly and RNA-recognition motifs that transfer RNA between TRAMP catalytic sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1073/pnas.2414980121 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080.
The TRAMP complex contains two enzymatic activities essential for RNA processing upstream of the nuclear exosome. Within TRAMP, RNA is 3' polyadenylated by a sub-complex of Trf4/5 and Air1/2 and unwound 3' to 5' by Mtr4, a DExH helicase. The molecular mechanisms of TRAMP assembly and RNA shuffling between the two TRAMP catalytic sites are poorly understood.
View Article and Find Full Text PDFOncogene
August 2023
Department of Urology, University of Washington, Seattle, WA, USA.
The complement system is a major component of the innate immune system that works through the cytolytic effect of the membrane attack complex (MAC). Complement component 7 (C7) is essential for MAC assembly and its precisely regulated expression level is crucial for the cytolytic activity of MAC. We show that C7 is specifically expressed by the stromal cells in both mouse and human prostates.
View Article and Find Full Text PDFInt J Biol Macromol
February 2023
Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan. Electronic address:
To effectively promote antitumor potency of doxorubicin (DOX), a regularly used chemotherapy drug, the tumor acidity-responsive polymeric nanomicelles from self-assembly of the as-synthesized amphiphilic benzoic imine-containing PEGylated chitosan-g-poly(lactic-co-glycolic acid) (PLGA) conjugates were developed as vehicles of DOX. The attained PEGylated chitosan-g-PLGA nanomicelles with high PEGylation degree (H-PEG-CSPNs) were characterized to exhibit a "onion-like" core-shell-corona structure consisting of a hydrophobic PLGA core covered by benzoic imine-rich chitosan shell and outer hydrophilic PEG corona. The DOX-carrying H-PEG-CSPNs (DOX@H-PEG-CSPNs) displayed robust colloidal stability under large-volume dilution condition and in a serum-containing aqueous solution of physiological salt concentration.
View Article and Find Full Text PDFMethods Enzymol
August 2022
Department of Chemistry & Biochemistry, Utah State University, Logan, Utah, United States. Electronic address:
The Ski2-like RNA helicase, Mtr4, plays a central role in nuclear RNA surveillance pathways by delivering targeted substrates to the RNA exosome for processing or degradation. RNA target selection is accomplished by a variety of Mtr4-mediated protein complexes. In S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!