A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Human brain dynamics are shaped by rare long-range connections over and above cortical geometry. | LitMetric

Human brain dynamics are shaped by rare long-range connections over and above cortical geometry.

Proc Natl Acad Sci U S A

Centre for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona 08018, Spain.

Published: January 2025

AI Article Synopsis

  • A topological principle suggests that the physical structure of the brain (its anatomy) significantly influences its functional dynamics.
  • Researchers found that while local connectivity patterns can explain much of brain function, they overlook the essential role of rare long-range cortical connections, which enhance information processing.
  • By incorporating both local connections and these rare long-range connections into a combined model (EDR+LR), they showed that this approach more effectively captures the complexities of brain activity compared to traditional geometric representations.

Article Abstract

A fundamental topological principle is that the container always shapes the content. In neuroscience, this translates into how the brain anatomy shapes brain dynamics. From neuroanatomy, the topology of the mammalian brain can be approximated by local connectivity, accurately described by an exponential distance rule (EDR). The compact, folded geometry of the cortex is shaped by this local connectivity, and the geometric harmonic modes can reconstruct much of the functional dynamics. However, this ignores the fundamental role of the rare long-range (LR) cortical connections, crucial for improving information processing in the mammalian brain, but not captured by local cortical folding and geometry. Here, we show the superiority of harmonic modes combining rare LR connectivity with EDR (EDR+LR) in capturing functional dynamics (specifically LR functional connectivity and task-evoked brain activity) compared to geometry and EDR representations. Importantly, the orchestration of dynamics is carried out by a more efficient manifold made up of a low number of fundamental EDR+LR modes. Our results show the importance of rare LR connectivity for capturing the complexity of functional brain activity through a low-dimensional manifold shaped by fundamental EDR+LR modes.

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.2415102122DOI Listing

Publication Analysis

Top Keywords

brain dynamics
8
rare long-range
8
mammalian brain
8
local connectivity
8
harmonic modes
8
functional dynamics
8
rare connectivity
8
brain activity
8
fundamental edr+lr
8
edr+lr modes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!