A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deriving a genetic regulatory network from an optimization principle. | LitMetric

Many biological systems operate near the physical limits to their performance, suggesting that aspects of their behavior and underlying mechanisms could be derived from optimization principles. However, such principles have often been applied only in simplified models. Here, we explore a detailed mechanistic model of the gap gene network in the embryo, optimizing its 50+ parameters to maximize the information that gene expression levels provide about nuclear positions. This optimization is conducted under realistic constraints, such as limits on the number of available molecules. Remarkably, the optimal networks we derive closely match the architecture and spatial gene expression profiles observed in the real organism. Our framework quantifies the tradeoffs involved in maximizing functional performance and allows for the exploration of alternative network configurations, addressing the question of which features are necessary and which are contingent. Our results suggest that multiple solutions to the optimization problem might exist across closely related organisms, offering insights into the evolution of gene regulatory networks.

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.2402925121DOI Listing

Publication Analysis

Top Keywords

gene expression
8
deriving genetic
4
genetic regulatory
4
regulatory network
4
optimization
4
network optimization
4
optimization principle
4
principle biological
4
biological systems
4
systems operate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!