Flexible thermoelectric systems capable of converting human body heat or solar heat into sustainable electricity are crucial for the development of self-powered wearable electronics. However, challenges persist in maintaining a stable temperature gradient and enabling scalable fabrication for their commercialization. Herein, we present a facile approach involving the screen printing of large-scale carbon nanotube (CNT)-based thermoelectric arrays on conventional textile. These arrays were integrated with the radiation-modulated thermoelectric fabrics of electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) membranes for the low-cost and high-performance wearable self-power application. Combined with the excellent photothermal properties of CNTs, the resulting thermoelectric fabric (0.2 square meters) achieves a substantial Δ of 37 kelvin under a solar intensity of ~800 watt per square meter, yielding a peak power density of 0.20 milliwatt per square meter. This study offers a pragmatic pathway to simultaneously address thermal management and electricity generation in self-powered wearable applications by efficiently harvesting solar energy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698087 | PMC |
http://dx.doi.org/10.1126/sciadv.adr2158 | DOI Listing |
Sci Adv
January 2025
National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China.
Flexible thermoelectric systems capable of converting human body heat or solar heat into sustainable electricity are crucial for the development of self-powered wearable electronics. However, challenges persist in maintaining a stable temperature gradient and enabling scalable fabrication for their commercialization. Herein, we present a facile approach involving the screen printing of large-scale carbon nanotube (CNT)-based thermoelectric arrays on conventional textile.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!