Vacancies are crucial for the radiation resistance, strength, and ductility of high-entropy alloys (HEAs). However, complex electronic interactions resulting from chemical disorder prohibit the quantification of vacancy formation energy () and migration barriers (). Herein, we propose an electronic descriptor χ (electronegativity χ and valence-electron number ) to quantify the bonding strength of constituents on the basis of the tight-binding model, which allows us to build analytical models to achieve the site-to-site quantification of and . The descriptor χ reflects the d-band occupation, indicating the dominant role of the electronic interactions in the vacancy formation and migration of HEAs. As a size effect, local lattice distortion plays a more important role in vacancy migration than in vacancy formation. Our model establishes a universal physical picture of vacancy formation and migration, which helps to understand the radiation resistance and mechanical properties of HEAs, thereby accelerating the design of high-performance HEAs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698082 | PMC |
http://dx.doi.org/10.1126/sciadv.adr4697 | DOI Listing |
Nat Commun
January 2025
Institute for Materials Science, University of Stuttgart, D-70569, Stuttgart, Germany.
The knowledge of diffusion mechanisms in materials is crucial for predicting their high-temperature performance and stability, yet accurately capturing the underlying physics like thermal effects remains challenging. In particular, the origin of the experimentally observed non-Arrhenius diffusion behavior has remained elusive, largely due to the lack of effective computational tools. Here we propose an efficient ab initio framework to compute the Gibbs energy of the transition state in vacancy-mediated diffusion including the relevant thermal excitations at the density-functional-theory level.
View Article and Find Full Text PDFSci Adv
January 2025
Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, China.
Vacancies are crucial for the radiation resistance, strength, and ductility of high-entropy alloys (HEAs). However, complex electronic interactions resulting from chemical disorder prohibit the quantification of vacancy formation energy () and migration barriers (). Herein, we propose an electronic descriptor χ (electronegativity χ and valence-electron number ) to quantify the bonding strength of constituents on the basis of the tight-binding model, which allows us to build analytical models to achieve the site-to-site quantification of and .
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Centre de Recherche Scientifique Et Technique en Analyses Physico-Chimiques, CP 42004, Bou-Ismail, Tipaza, Algeria.
ZnO-CoO material was successfully synthesized by the co-precipitation method and used as a catalyst for the removal of diclofenac sodium (DCF). ZnO-CoO exhibited higher catalytic activity in the catalytic process compared to the photocatalytic processes. Under optimum conditions, the activation of peroxymonosulfate (PMS) by ZnO-CoO achieved approximately 99% removal of DCF, confirming the effective adsorption and activation of PMS.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemical Engineering, and Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion Israel Institute of Technology (GTIIT), Guangdong 515063, China.
Strong metal-support interactions (SMSIs) are essential for optimizing the performance of supported metal catalysts by tuning the metal-oxide interface structures. This study explores the hydrogenation of CO to methanol over Cu-supported catalysts, focusing on the synergistic effects of strong metal-support interaction (SMSI) and oxygen vacancies introduced by the CO treatment to the catalysts on the catalytic performance. Cu nanoparticles were immobilized on Mg-Al layered double oxide (LDO) supports and modified with nitrate ions to promote oxygen vacancy generation.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
Understanding the behavior of high-entropy carbides (HECs) under oxygen-containing environments is of particular importance for their promising applications in structural components, catalysis, and energy-related fields. Herein, the structural evolution of (Ta, Ti, Cr, Nb)C (HEC-1) nanoparticles (NPs) is tracked in situ during the oxidation at the atomic scale by using an open-cell environmental aberration-corrected scanning transmission electron microscope. Three key stages are clearly discerned during the oxidation of HEC-1 NPs at the atomic level below 900 °C: i) increased amorphization of HEC-1 NPs from 300 to 500 °C due to the energetically favorable formation of carbon vacancies and substitution of carbon with oxygen atoms; ii) nucleation and subsequent growth of locally ordered nanocluster intermediates within the generated amorphous oxides from 500 to 800 °C; and iii) final one-step crystallization of non-equimolar MeO and MeO (Me = metallic elements, Ta, Ti, Cr, and Nb) high-entropy oxides above 800 °C, accompanied with the reduction in atomic defects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!