AI Article Synopsis

  • Enhancing transport and mechanical properties in cathode composites is essential for solid-state battery performance.
  • The FAST electrode features vertically aligned carbon nanotubes in a polymer electrolyte, improving ionic and electronic conductivity while reinforcing the electrode.
  • This innovative design leads to excellent electrochemical performance, achieving a capacity of 148.2 mAh/g at 0.2 C over 100 cycles, indicating progress in solid-state lithium metal battery technology.

Article Abstract

Enhancing transport and chemomechanical properties in cathode composites is crucial for the performance of solid-state batteries. Our study introduces the filler-aligned structured thick (FAST) electrode, which notably improves mechanical strength and ionic/electronic conductivity in solid composite cathodes. The FAST electrode incorporates vertically aligned nanoconducting carbon nanotubes within an ion-conducting polymer electrolyte, creating a low-tortuosity electron/ion transport path while strengthening the electrode's structure. This design not only mitigates recrystallization of the polymer electrolyte but also establishes a densified local electric field distribution and accelerates the migration of lithium ions. The FAST electrode showcases outstanding electrochemical performance with lithium iron phosphate as the active material, achieving a high capacity of 148.2 milliampere hours per gram at 0.2 C over 100 cycles with substantial material loading (49.3 milligrams per square centimeter). This innovative electrode design marks a remarkable stride in addressing the challenges of solid-state lithium metal batteries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698086PMC
http://dx.doi.org/10.1126/sciadv.adr4292DOI Listing

Publication Analysis

Top Keywords

fast electrode
12
cathode composites
8
solid-state batteries
8
polymer electrolyte
8
enhancing cathode
4
composites conductive
4
conductive alignment
4
alignment synergy
4
synergy solid-state
4
batteries enhancing
4

Similar Publications

Article Synopsis
  • Enhancing transport and mechanical properties in cathode composites is essential for solid-state battery performance.
  • The FAST electrode features vertically aligned carbon nanotubes in a polymer electrolyte, improving ionic and electronic conductivity while reinforcing the electrode.
  • This innovative design leads to excellent electrochemical performance, achieving a capacity of 148.2 mAh/g at 0.2 C over 100 cycles, indicating progress in solid-state lithium metal battery technology.
View Article and Find Full Text PDF
Article Synopsis
  • Electrochemical sensing is essential for real-time monitoring of neurotransmitters and neuromodulators, helping to understand various physiological and psychological processes in the central nervous system.
  • Advanced biosensor technologies like voltammetry, amperometry, potentiometry, FET, and OECT are highlighted for their key roles in improving the detection capabilities from single cells to whole brains.
  • The review also discusses the strengths and weaknesses of these techniques while addressing current challenges and future directions for enhancing electrochemical biosensing methods.
View Article and Find Full Text PDF

Although various sensors specifically developed for target analytes are available, affordable biosensing solutions with broad applicability are limited. In this study, a cost-effective biosensor for detecting human epidermal growth factor receptor 2 (HER2) was developed using custom-made gold leaf electrodes (GLEs). A novel strategy for antibody immobilization on a gold surface, for the first time mediated by protein L and HER2-specific antibody trastuzumab, was examined using commercial screen-printed gold electrodes and GLEs.

View Article and Find Full Text PDF

A TiO/CdS heterostructure has been widely investigated as a potential photoanode for photoelectrochemical (PEC) water splitting for hydrogen evolution. However, the efficiency and stability still remain challenging due to the sluggish reaction dynamics for water oxidation and easy photocorrosion of CdS. Here we report a ternary TiO/CdS/IrO heterostructure with IrO as a hole transport layer for PEC glycerol oxidation coupled with hydrogen evolution.

View Article and Find Full Text PDF

The widespread demand for battery-powered technologies has propelled the search for efficient and commercially viable electrode materials with fast-charging abilities. Reported herein is an MoS2-expanded graphite (EG) composite as a stable and high-rate lithium-ion battery (LIB) anode, delivering specific capacities of 796 mAh g-1 at 0.5 A g-1 and 320 mAh g-1 at 20 A g-1 over 400 cycles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!