Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The computational search for new stable inorganic compounds is faster than ever, thanks to high-throughput density functional theory (DFT). However, stable compound searches remain highly expensive because of the enormous search space and the cost of DFT calculations. To aid these searches, recommendation engines have been developed. We conduct a systematic comparison of the performance of previously developed recommendation engines, specifically ones based on elemental substitution, data mining, and neural network prediction of formation enthalpy. After identifying ways to improve the recommendation engines, we find the neural network to be superior at recommending stable Heusler compounds. Armed with improved recommendation engines, we identify tens of thousands of compounds that are stable at zero temperature and pressure, now available in the Open Quantum Materials Database. We summarize this diverse pool of compounds, including the elusive mixed anion compounds, and two of their many applications: thermoelectricity and solar thermochemical fuel production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698120 | PMC |
http://dx.doi.org/10.1126/sciadv.adq1431 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!