Excitons, which are Coulomb bound electron-hole pairs, are composite bosons and thus at low temperature can form a superfluid state with a single well-defined amplitude and phase. We directly image this macroscopic exciton superfluid state in an hBN-separated MoSe-WSe heterostructure. At high density, we identify quasi-long-range order over the entire active area of our sample, through spatially resolved coherence measurements. By varying the exciton density and sample temperature, we map out the phase diagram of the superfluid. We observe the superfluid phase persisting to a temperature of 15 K, which is in excellent agreement with theoretical predictions. This works paves the way to realizing on chip superfluid structures capable of studying fundamental physical behaviors and quantum devices that use superfluidity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698081 | PMC |
http://dx.doi.org/10.1126/sciadv.adr1772 | DOI Listing |
Phys Rev Lett
December 2024
Department of Engineering Science, University of Electro-Communications, Tokyo 182-8585, Japan.
When a two-component mixture of immiscible fluids is stirred, the fluids are split into smaller domains with more vigorous stirring. We numerically investigate the sizes of such domains in a fully developed turbulent state of a two-component superfluid stirred with energy input rate ε. For the strongly immiscible condition, the typical domain size is shown to be proportional to ε^{-2/5}, as predicted by the Kolmogorov-Hinze theory in classical fluids.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Physics, University of Arizona, Tucson, AZ 85721, USA.
Nat Commun
January 2025
Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
Magnetotransport of conventional semiconductor based double layer systems with barrier suppressed interlayer tunneling has been a rewarding subject due to the emergence of an interlayer coherent state that behaves as an excitonic superfluid. Large angle twisted bilayer graphene offers unprecedented strong interlayer Coulomb interaction, since both layer thickness and layer spacing are of atomic scale and a barrier is no more needed as the twist induced momentum mismatch suppresses tunneling. The extra valley degree of freedom also adds richness.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Institute for Quantum Electronics and Quantum Center, ETH Zürich, 8093 Zürich, Switzerland.
The formation of dark states is an important concept in quantum sciences, but its compatibility with strong interparticle interactions-for example, in a quantum degenerate gas-is hardly explored. Here, we realize a dark state in one of the spins of a two-component, resonantly interacting Fermi gas using a Λ system within the D_{2} transitions of ^{6}Li at high magnetic field. The dark state is created in a micrometer-sized region within a one-dimensional channel connecting two superfluid reservoirs.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
The two-dimensional Yukawa-Sachdev-Ye-Kitaev (2D-YSYK) model provides a universal theory of quantum phase transitions in metals in the presence of quenched random spatial fluctuations in the local position of the quantum critical point. It has a Fermi surface coupled to a scalar field by spatially random Yukawa interactions. We present full numerical solutions of a self-consistent disorder averaged analysis of the 2D-YSYK model in both the normal and superconducting states, obtaining electronic spectral functions, frequency-dependent conductivity, and superfluid stiffness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!