A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Transcriptomic DN3 clock neuron subtypes regulate sleep. | LitMetric

AI Article Synopsis

  • Researchers used single-cell RNA sequencing to examine clock neurons in animal brains, particularly focusing on the DN3s, which are a major type of clock neuron in fruit flies.
  • DN3s were found to be organized into 12 unique clusters with distinct gene expression patterns that set them apart from other clock neurons.
  • The study revealed that certain DN3 subtypes play a significant role in promoting sleep through a specific receptor, suggesting a complex relationship between clock neurons and sleep regulation.

Article Abstract

Circadian neurons within animal brains orchestrate myriad physiological processes and behaviors, but the contribution of these neurons to the regulation of sleep is not well understood. To address this deficiency, we leveraged single-cell RNA sequencing to generate a comprehensive census of transcriptomic cell types of clock neurons. We focused principally on the enigmatic DN3s, which constitute most fly brain clock neurons and were previously almost completely uncharacterized. These DN3s are organized into 12 clusters with unusual gene expression features compared to the more well-studied clock neurons. We further show that previously uncharacterized DN3 subtypes promote sleep through a G protein-coupled receptor, . Our findings indicate an intricate regulation of sleep behavior by clock neurons and highlight their remarkable diversity in gene expression and functional properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698076PMC
http://dx.doi.org/10.1126/sciadv.adr4580DOI Listing

Publication Analysis

Top Keywords

clock neurons
16
regulation sleep
8
gene expression
8
neurons
6
clock
5
transcriptomic dn3
4
dn3 clock
4
clock neuron
4
neuron subtypes
4
subtypes regulate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!