This study intends to optimize the carbon footprint management model of power enterprises through artificial intelligence (AI) technology to help the scientific formulation of carbon emission reduction strategies. Firstly, a carbon footprint calculation model based on big data and AI is established, and then machine learning algorithm is used to deeply mine the carbon emission data of power enterprises to identify the main influencing factors and emission reduction opportunities. Finally, the driver-state-response (DSR) model is used to evaluate the carbon audit of the power industry and comprehensively analyze the effect of carbon emission reduction. Taking China Electric Power Resources and Datang International Electric Power Company as examples, this study uses the comprehensive evaluation method of entropy weight- technique for order preference by similarity to ideal solution (TOPSIS). China Electric Power Resources Company has outstanding performance in promoting renewable energy, with its comprehensive evaluation index rising from 0.5458 in 2020 to 0.627 in 2022, while the evaluation index of Datang International Electric Power Company fluctuated and dropped to 0.421 in 2021. The research conclusion reveals the actual achievements and existing problems of power enterprises in energy saving and emission reduction, and provides reliable carbon information for the government, enterprises, and the public. The main innovation of this study lies in: using artificial intelligence technology to build a carbon footprint calculation model, combining with the data of International Energy Agency Carbon Dioxide (IEA CO2) emission database, and using machine learning algorithm to deeply mine the important factors in carbon emission data, thus putting forward a carbon audit evaluation system of power enterprises based on DSR model. This study not only fills the blank of carbon emission management methods in the power industry, but also provides a new perspective and basis for the government and enterprises to formulate carbon emission reduction strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698387 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0316537 | PLOS |
Environ Sci Pollut Res Int
January 2025
Faculty of Geography, Lomonosov Moscow State University, 119991, Moscow, Russia.
The content of 39 metals and metalloids (MMs) in submicron road dust (PM fraction) was studied in the traffic zone, residential courtyards with parking lots, and on pedestrian roads in parks in Moscow. The geochemical profiles of PM vary slightly between different types of roads and courtyards but differ significantly from those in parks. In Moscow, compared to other cities worldwide, submicron road dust contains less As, Sb, Mo, Cr, Cd, Sn, Tl, Ca, Rb, La, Y, U, but more Cu, Zn, Co, Fe, Mn, Ti, Zr, Al, V.
View Article and Find Full Text PDFSci Rep
January 2025
Civil and Environmental Engineering Department, Khalifa University, Abu Dhabi, UAE.
Estimating spatiotemporal maps of greenhouse gases (GHGs) is important for understanding climate change and developing mitigation strategies. However, current methods face challenges, including the coarse resolution of numerical models, and gaps in satellite data, making it essential to improve the spatiotemporal estimation of GHGs. This study aims to develop an advanced technique to produce high-fidelity (1 km) maps of CO and CH over the Arabian Peninsula, a highly vulnerable region to climate change.
View Article and Find Full Text PDFSci Total Environ
January 2025
Direction Milieux et impacts sur le vivant, Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil en Halatte, France.
Emissions due to tires retread/repair and incineration are a cause of concern owing to the presence of nanoparticles in the products. The assessment exposure to humans hereto related is a challenge in an environmental context. The first object of this work is to develop a method to characterize the emission sources using online (counting and sizing) and offline measurements.
View Article and Find Full Text PDFSci Total Environ
January 2025
Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 101408, China. Electronic address:
The biogeochemical processes of organic matter exhibit notable variability and unpredictability in marginal seas. In this study, the abiologically and biologically driving effects on particulate organic matter (POM) and dissolved organic matter (DOM) were investigated in the Yellow Sea and Bohai Sea of China, by introducing the cutting-edge network inference tool of deep learning. The concentration of particulate organic carbon (POC) was determined to characterize the status of POM, and the fractions and fluorescent properties of DOM were identified through 3D excitation-emission-matrix spectra (3D-EEM) combined parallel factor analysis (PARAFAC).
View Article and Find Full Text PDFSci Total Environ
January 2025
Yunnan Key Laboratory of Internal Combustion Engine, Kunming University of Science and Technology, Kunming 650500, China.
Ammonia is a highly promising carbon-neutral fuel. The use of ammonia as a fuel for internal combustion engines can reduce fossil energy consumption and greenhouse gas emissions. However, the high ignition energy required for ammonia and the slow flame propagation rate result in low combustion efficiency when ammonia is used directly in internal combustion engines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!