AI Article Synopsis

  • Understanding plant growth is crucial, especially with restrictions like COVID-19 hindering field studies, making modeling a valuable tool for predicting plant performance in limited conditions.
  • The study focused on rubber plants grown in two types of acidic soils treated with different magnesium sources, assessing their growth through metrics like height, stem diameter, and biomass, using specific mathematical models to analyze growth rates.
  • Results indicated that magnesium-rich synthetic gypsum (MRSG) significantly enhanced rubber seedling growth compared to other treatments, especially in Ultisol soil, suggesting MRSG could effectively replace traditional magnesium fertilizers for sustainable growth.

Article Abstract

Knowledge of plant growth dynamics is essential where constraints such as COVID-19 lockdown restrictions have limited its field establishment. Thus, modeling can be used to predict plant performance where field planting/monitoring cannot be achieved. This study was conducted on the growth dynamics of rubber planted on two acid soils treated with either dolomitic limestone (GML), kieserite or Mg-rich synthetic gypsum (MRSG) to supply the Mg required by rubber seedlings. To understand the effect of applied treatments on the changes in rubber growth, data on plant height, stem diameter and biomass were regressed against months after transplanting (MAT) using the equation y = A/ (1+be-ct), and its derivative [Formula: see text] was utilized for estimating the growth rate of the parameters. The dynamics in plant height, stem girth and plant biomass were modelled using an exponential function of y = Aebt and their rate of change was derived using dx/dy = Abebt. The experiment indicated that the logistic growth curve model expressed as y = A/ (1+be-ct), closely described the growth in terms of each parameter against months after transplanting. A high probability level (a = 0.0001) was recorded in the model for all the treatments in the study. The growth of rubber seedlings in the glasshouse was improved by MRSG treatment in the two studied soils (Ultisol and Oxisol), giving comparable results to other Mg fertilizer treatments. The plant performed better on the Ultisol compared to the Oxisol. The results indicate the potential of using MRSG to replace conventional Mg-fertilizers to sustain rubber seedling growth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698454PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0307476PLOS

Publication Analysis

Top Keywords

growth
9
mg-rich synthetic
8
synthetic gypsum
8
acid soils
8
growth dynamics
8
rubber seedlings
8
plant height
8
height stem
8
months transplanting
8
plant
6

Similar Publications

Increasing microplastic concentrations have nonlinear impacts on the physiology of reef-building corals.

Sci Total Environ

January 2025

Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany; Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA.

The pollution of marine environments with plastics, particularly microplastic (MP, i.e., plastic particles <5 mm), is a major threat to marine biota, including corals.

View Article and Find Full Text PDF

Collagen/polyvinyl alcohol scaffolds combined with platelet-rich plasma to enhance anterior cruciate ligament repair.

Biomater Adv

December 2024

College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China. Electronic address:

In anterior cruciate ligament (ACL) repair methods, the continuous enzymatic erosion of synovial fluid can impede healing and potentially lead to repair failure, as well as exacerbate articular cartilage wear, resulting in joint degeneration. Inspired by the blood clot during medial collateral ligament healing, we developed a composite scaffold comprising collagen (1 %, w/v) and polyvinyl alcohol (5 %, w/v) combined with platelet-rich plasma (PRP). The composite scaffold provides a protective barrier against synovial erosion for the ruptured ACL, while simultaneously facilitating tissue repair, thereby enhancing the efficacy of ACL repair techniques.

View Article and Find Full Text PDF

Bone regeneration in sheep model induced by strontium-containing mesoporous bioactive glasses.

Biomater Adv

December 2024

Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28040 Madrid, Spain. Electronic address:

Local delivery of therapeutic ions from bioactive mesoporous glasses (MBGs) is postulated as one of the most promising strategies for regenerative therapy of critical bone defects. Among these ions, Sr cation has been widely considered for this purpose as part of the composition of MBGs. MBGs of chemical composition 75SiO-25-x CaO-5PO-xSrO with x = 0, 2.

View Article and Find Full Text PDF

Hydrogen peroxide (HO) was used to modify a natural polymer, sesbania gum (SG), to prepare oxidized sesbania gum (OSG) with the aim of investigating the physicochemical properties, antimicrobial activity of polyethylene oxide (PEO), OSG, and ε-poly(lysine) (ε-PL) composite fibre membranes and their applications in fresh-cut mango preservation. The PEO/OSG/ε-PL composite fibre membranes were successfully prepared via solution blow spinning (SBS) technology. The results of a series of characterizations revealed that ε-PL was successfully loaded into the fibrous membranes, exhibited good biocompatibility, and ε-PL was better encapsulated, with the membranes.

View Article and Find Full Text PDF

Mutations that overexpress the epidermal growth factor receptor (EGFR) are linked to cancers like breast (15-20%), head and neck (10-15%), colorectal (5-8%), and non-small cell lung cancer (10-50%), especially in East Asian populations. EGFR activation stimulates "RAS/RAF/MEK/ERK, PI3K/Akt, and MAPK" pathways, which enhance cell division, survival, angiogenesis, and tumor growth while inhibiting apoptosis and metastasis. Secondary mutations (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!