A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Optimizing Kernel Extreme Learning Machine based on a Enhanced Adaptive Whale Optimization Algorithm for classification task. | LitMetric

Data classification is an important research direction in machine learning. In order to effectively handle extensive datasets, researchers have introduced diverse classification algorithms. Notably, Kernel Extreme Learning Machine (KELM), as a fast and effective classification method, has received widespread attention. However, traditional KELM algorithms have some problems when dealing with large-scale data, such as the need to adjust hyperparameters, poor interpretability, and low classification accuracy. To address these problems, this paper proposes an Enhanced Adaptive Whale Optimization Algorithm to optimize Kernel Extreme Learning Machine (EAWOA-KELM). Various methods were used to improve WOA. As a first step, a novel adaptive perturbation technique employing T-distribution is proposed to perturb the optimal position and avoid being trapped in a local maximum. Secondly, the WOA's position update formula was modified by incorporating inertia weight ω and enhancing convergence factor α, thus improving its capability for local search. Furthermore, inspired by the grey wolf optimization algorithm, use 3 excellent particle surround strategies instead of the original random selecting particles. Finally, a novel Levy flight was implemented to promote the diversity of whale distribution. Results from experiments confirm that the enhanced WOA algorithm outperforms the standard WOA algorithm in terms of both fitness value and convergence speed. EAWOA demonstrates superior optimization accuracy compared to WOA across 21 test functions, with a notable edge on certain functions. The application of the upgraded WOA algorithm in KELM significantly improves the accuracy and efficiency of data classification by optimizing hyperparameters. This paper selects 7 datasets for classification experiments. Compared with the KELM optimized by WOA, the EAWOA optimized KELM in this paper has a significant improvement in performance, with a 5%-6% lead on some datasets, indicating the effectiveness of EAWOA-KELM in classification tasks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698435PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0309741PLOS

Publication Analysis

Top Keywords

kernel extreme
12
extreme learning
12
learning machine
12
optimization algorithm
12
woa algorithm
12
enhanced adaptive
8
adaptive whale
8
whale optimization
8
classification
8
data classification
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!