A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Study on construction mechanic characteristics and construction optimization of super-large cross-section tunnel portal under shallow buried depth and asymmetrical loading: A case study in Southwest China. | LitMetric

AI Article Synopsis

  • The excavation of large tunnel portals can lead to significant engineering challenges, necessitating a thorough understanding of construction mechanics and careful scheme selection.
  • In analyzing a six-lane expressway tunnel in Southwest China, three excavation methods were compared: the three-bench seven-step method, the central diaphragm method (CDM), and the double side drift method (DSDM).
  • Results showed that asymmetrical loads affected rock deformation, with both CDM and DSDM providing better stability and less deformation by adapting the excavation sequence for optimal results.

Article Abstract

The excavation of the super-large cross-section tunnel portal section is prone to causing serious engineering distresses. The key factors to ensure the safe construction of portal section are to clarify the construction mechanic characteristics and select a reasonable construction scheme. In this paper, a bidirectional six-lane expressway tunnel in Southwest China was selected as an engineering case. Three excavation schemes, namely, the three-bench seven-step excavation method (TEM), the central diaphragm method (CDM), and the double side drift method (DSDM), were compared and analyzed. Findings revealed that due to the effect of the asymmetrically loaded and super-large cross-section, the surrounding rock deformation and supporting structure stress at the deep buried side were greater than those at the shallow buried side. The CDM and DSDM could reduce the tunnel span and provide temporary support in time, which could effectively control the surrounding rock deformation and improve the structural stress and the slope stability. According to the topographic condition, the excavation sequence of the DSDM was optimized. Excavating the shallow buried side drift first could alleviate the surrounding rock deformation and improve the slope stability in the early stage of construction. Finally, the optimal excavation scheme was successfully implemented.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698464PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0316736PLOS

Publication Analysis

Top Keywords

super-large cross-section
12
shallow buried
12
surrounding rock
12
rock deformation
12
buried side
12
construction mechanic
8
mechanic characteristics
8
cross-section tunnel
8
tunnel portal
8
southwest china
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!