Lateral Meningocele Syndrome (LMS), a disorder associated with NOTCH3 pathogenic variants, presents with neurological, craniofacial and skeletal abnormalities. Mouse models of the disease exhibit osteopenia that is ameliorated by the administration of Notch3 antisense oligonucleotides (ASO) targeting either Notch3 or the Notch3 mutation. To determine the consequences of LMS pathogenic variants in human cells and whether they can be targeted by ASOs, induced pluripotent NCRM1 and NCRM5 stem (iPS) cells harboring a NOTCH36692-93insC insertion were created. Parental iPSCs, NOTCH36692-93insC and isogenic controls, free of chromosomal aberrations as determined by human CytoSNP850 array, were cultured under conditions of neural crest, mesenchymal and osteogenic cell differentiation. The expected cell phenotype was confirmed by surface markers and a decline in OCT3/4 and NANOG mRNA. NOTCH36692-93insC cells displayed enhanced expression of Notch target genes HES1, HEY1, 2 and L demonstrating a NOTCH3 gain-of-function. There was enhanced osteogenesis in NOTCH36692-93insC cells as evidenced by increased mineralized nodule formation and ALPL, BGLAP and BSP expression. ASOs targeting NOTCH3 decreased both NOTCH3 wild type and NOTCH36692-93insC mutant mRNA by 40% in mesenchymal and 90% in osteogenic cells. ASOs targeting the NOTCH3 insertion decreased NOTCH36692-93insC by 70-80% in mesenchymal cells and by 45-55% in osteogenic cells and NOTCH3 mRNA by 15-30% and 20-40%, respectively. In conclusion, a NOTCH3 pathogenic variant causes a modest increase in osteoblastogenesis in human iPS cells in vitro and NOTCH3 and NOTCH3 mutant specific ASOs downregulate NOTCH3 transcripts associated with LMS.

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0316644PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698389PMC

Publication Analysis

Top Keywords

notch3
14
notch3 pathogenic
12
targeting notch3
12
cells
9
pathogenic variant
8
antisense oligonucleotides
8
induced pluripotent
8
pathogenic variants
8
notch3 notch3
8
ips cells
8

Similar Publications

Keloids are disfiguring proliferative scars, and their pathological mechanisms are still unclear. We have previously established that FoxC1 plays a significant role in rheumatoid arthritis and osteoarthritis, but its molecular mechanisms in pathological scar formation remain elusive. In this study, we analyzed keloid tissue characteristics using HE staining and immunohistochemistry, revealing abnormal expression of FoxC1 and Notch3 in keloids.

View Article and Find Full Text PDF

Lateral Meningocele Syndrome (LMS), a disorder associated with NOTCH3 pathogenic variants, presents with neurological, craniofacial and skeletal abnormalities. Mouse models of the disease exhibit osteopenia that is ameliorated by the administration of Notch3 antisense oligonucleotides (ASO) targeting either Notch3 or the Notch3 mutation. To determine the consequences of LMS pathogenic variants in human cells and whether they can be targeted by ASOs, induced pluripotent NCRM1 and NCRM5 stem (iPS) cells harboring a NOTCH36692-93insC insertion were created.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Centre for Healthy Brain Ageing (CHeBA), University of New South Wales, Sydney, NSW, Australia.

Background: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a rare, hereditary cerebrovascular disease which causes stroke, complex migraine, and cognitive impairment. Given its monogenic nature, CADASIL is considered a 'pure' model of small vessel disease and vascular dementia. CADASIL is caused by NOTCH3 pathogenic variants with a broad resulting phenotypic spectrum.

View Article and Find Full Text PDF

Targeted exonic sequencing identifies novel variants in a cerebral small vessel disease cohort.

Clin Chim Acta

December 2024

Queensland University of Technology (QUT), Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia. Electronic address:

Background And Aims: Cerebral small vessel diseases (CSVDs) are a set of conditions that affect the small blood vessels in the brain and can cause severe neurological pathologies such as stroke and vascular dementia. The most common monogenic CSVD is cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) which is caused by mutations in NOTCH3. However, only 15-20% of CADASIL cases referred for genetic testing have pathogenic mutations in NOTCH3.

View Article and Find Full Text PDF

Study Question: Is it possible to predict an euploid chromosomal constitution and identify a transcriptomic profile compatible with extended embryonic development from RNA sequencing (RNA-Seq) data?

Summary Answer: It has been possible to obtain a karyotype comparable to preimplantation genetic testing for aneuploidy (PGT-A), in addition to a transcriptomic signature of embryos which might be suggestive of improved implantation capacity.

What Is Known Already: Conventional assessment of embryo competence, based on morphology and morphokinetic, lacks knowledge of molecular aspects and faces controversy in predicting ploidy status. Understanding the embryonic transcriptome is crucial, as gene expression influences development and implantation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!