Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Medical volume data are rapidly increasing, growing from gigabytes to petabytes, which presents significant challenges in organisation, storage, transmission, manipulation, and rendering. To address the challenges, we propose an end-to-end architecture for data compression, leveraging advanced deep learning technologies. This architecture consists of three key modules: downsampling, implicit neural representation (INR), and super-resolution (SR). We employ a trade-off point method to optimise each module's performance and achieve the best balance between high compression rates and reconstruction quality. Experimental results on multi-parametric MRI data demonstrate that our method achieves a high compression rate of up to 97.5% while maintaining superior reconstruction accuracy, with a Peak Signal-to-Noise Ratio (PSNR) of 40.05 dB and Structural Similarity Index (SSIM) of 0.96. This approach significantly reduces GPU memory requirements and processing time, making it a practical solution for handling large medical datasets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698368 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0314944 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!