Thiol-Ene Click Chemistry: A General Strategy for Tuning the Properties of Vinylene-Linked Covalent Organic Frameworks.

ACS Appl Mater Interfaces

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China.

Published: January 2025

AI Article Synopsis

  • Vinylene-linked Covalent Organic Frameworks (V-2D-COFs) are advanced materials known for their stable, crystalline structures and excellent optoelectronic properties, but their synthesis is limited due to challenges with C═C bonds.
  • Postsynthetic modification (PSM) offers a solution by allowing the introduction of functional groups into these frameworks, thus expanding their potential applications.
  • The study demonstrates a thiol-ene click reaction to successfully modify two COFs, enhancing their properties and structural versatility, which could lead to new applications in areas like hydrophilicity and proton conductivity.

Article Abstract

Vinylene-linked Covalent Organic Frameworks (V-2D-COFs) are a class of promising porous organic materials that feature fully π-conjugated structures, high crystallinity, ultrahigh chemical stability, and extraordinary optoelectronic properties. However, the types of reactions and the availability of monomers for synthesizing linked COFs are considerably limited by the irreversibility of the C═C bond, and the complete π-conjugated structure restricts their in-depth research in hydrophilicity, membrane materials, and proton conductivity. Postsynthetic modification (PSM), which can avoid these problems by incorporating functional moieties into the predetermined framework, provides an alternative way to construct diverse V-2D-COFs. Herein, we report a general strategy to introduce C-C, C-S-C, and functional groups into -COFs via the thiol-ene click reaction. To demonstrate the universality of this approach, we synthesized two COFs (COF-CN and COF-1), and subsequently introduced six different types of thiol compounds at their skeletal C═C sites. The quantitative yield was confirmed by X-ray Photoelectron Spectroscopy (XPS) and cross-polarization magic angle spinning C NMR spectroscopy. This thiol-ene click modification of vinylene-linked COFs at skeletal C═C sites allows for flexible structural design, providing these COFs with new linkages (C-C and C-S-C) that are otherwise difficult to produce directly. Thus, it facilitates precise modulation of their properties, such as photophysical properties, hydrophilicity, and proton conductivity, promising a diverse range of compelling applications for the future.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c19765DOI Listing

Publication Analysis

Top Keywords

thiol-ene click
12
general strategy
8
vinylene-linked covalent
8
covalent organic
8
organic frameworks
8
proton conductivity
8
c-c c-s-c
8
skeletal c═c
8
c═c sites
8
click chemistry
4

Similar Publications

Thiol-Ene Click Chemistry: A General Strategy for Tuning the Properties of Vinylene-Linked Covalent Organic Frameworks.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China.

Article Synopsis
  • Vinylene-linked Covalent Organic Frameworks (V-2D-COFs) are advanced materials known for their stable, crystalline structures and excellent optoelectronic properties, but their synthesis is limited due to challenges with C═C bonds.
  • Postsynthetic modification (PSM) offers a solution by allowing the introduction of functional groups into these frameworks, thus expanding their potential applications.
  • The study demonstrates a thiol-ene click reaction to successfully modify two COFs, enhancing their properties and structural versatility, which could lead to new applications in areas like hydrophilicity and proton conductivity.
View Article and Find Full Text PDF

Chiral macrocycles have emerged as attractive media for chromatographic enantioseparation due to their excellent host-guest recognition properties. In this study, a new chiral stationary phase (CSP) based on 1,1'-binaphthyl chiral polyimine macrocycle (CPM) was reported. The CPM was synthesized by one-step aldehyde-amine condensation of (S)-2,2'-dihydroxy-[1,1'-binaphthalene]-3,3'-dicarboxaldehyde with 1,2-phenylenediamine and bonded on thiolated silica via the thiol-ene click reaction to afford the CSP.

View Article and Find Full Text PDF

The present work reports on the preparation, characterization, and evaluation of a set of novel triphenyl-modified silica-based stationary phases without and with embedded ion-exchange sites for mixed-mode liquid chromatography. The three synthesized triphenyl phases differed in additionally incorporated ion-exchange sites. In one embodiment, allyltriphenylsilane was bonded to thiol-modified silica by thiol-ene click reaction, leading to particles with no ion-exchange sites.

View Article and Find Full Text PDF

Herein, novel, superabsorbent, and pH-responsive hydrogels obtained by the photochemical cross-linking of hydrophilic poly(vinylphosphonates) are introduced. First, statistical copolymers of diethyl vinylphosphonate (DEVP) and diallyl vinylphosphonate (DAlVP) are synthesized via rare earth metal-mediated group-transfer polymerization (REM-GTP) yielding similar molecular weights ( = 127-142 kg/mol) and narrow polydispersities ( < 1.12).

View Article and Find Full Text PDF

Self-Immolative Polymers Derived from Renewable Resources via Thiol-Ene Chemistry.

Angew Chem Int Ed Engl

December 2024

Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario, N6 A 5B7, Canada.

The development of polymers from renewable resources is a promising approach to reduce reliance on petrochemicals. In addition, depolymerization is attracting significant attention for the breakdown of polymers at their end-of-life or to achieve specific stimuli-responsive functions. However, the design of polymers incorporating both of these features remains a challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!