A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Functionalization of Pyridines at the C4 Position via Metalation and Capture. | LitMetric

The functionalization of pyridines at positions remote to the N-atom remains an outstanding problem in organic synthesis. The inherent challenges associated with overriding the influence of the embedded N-atom within pyridines was overcome using n-butylsodium, which provided an avenue to deprotonate and functionalize the C4-position over traditionally observed addition products that are formed with organolithium bases. In this work, we show that freshly generated 4-sodiopyrdines could undergo transition metal free alkylation reactions directly with a variety of primary alkyl halides bearing diverse functional groups. In addition, after transmetalation to zinc chloride a simple and efficient Negishi cross-coupling protocol was formulated for a variety of aromatic and heteroaromatic halides. The robustness of this protocol was demonstrated through the late-stage installation of 4-pyridyl fragments into a variety of complex active pharmaceutical ingredients including loratadine and prochlorperazine. Furthermore, through rapid injection NMR investigations, we are able to directly observe the evolution of anionic intermediates and determined that two distinct mechanistic pathways lead to the observed site selectivity: (1) the C4-H within 2,6-disubstituted pyridines could be removed directly and (2) the C4 selectivity of unsubstituted pyridine originates from the intermolecular exchange of metalation sites via a thermodynamic pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202424172DOI Listing

Publication Analysis

Top Keywords

functionalization pyridines
8
pyridines position
4
position metalation
4
metalation capture
4
capture functionalization
4
pyridines positions
4
positions remote
4
remote n-atom
4
n-atom remains
4
remains outstanding
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!