A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

D3-ImgNet: A Framework for Molecular Properties Prediction Based on Data-Driven Electron Density Images. | LitMetric

D3-ImgNet: A Framework for Molecular Properties Prediction Based on Data-Driven Electron Density Images.

J Phys Chem A

Liaoning Key Laboratory of Manufacturing System and Logistics Optimization, Shenyang 110819, China.

Published: January 2025

Artificial intelligence technology has introduced a new research paradigm into the fields of quantum chemistry and materials science, leading to numerous studies that utilize machine learning methods to predict molecular properties. We contend that an exemplary deep learning model should not only achieve high-precision predictions of molecular properties but also incorporate guidance from physical mechanisms. Here, we propose a framework for predicting molecular properties based on data-driven electron density images, referred to as D3-ImgNet. This framework integrates group theory, density functional theory-related mechanisms, deep learning techniques, and multiobjective optimization mechanisms, embodying a methodological fusion of data analytics and system optimization. Initially, we focus on atomization energies as the primary target of our study, using the QM9 data set to demonstrate the framework's ability to predict molecular atomization energies with high accuracy and excellent exploration performance. We then further evaluate its predictive capabilities for dipole moments and forces with the QM9X data set, achieving satisfactory results. Additionally, we tested the D3-ImgNet framework on the S2 reaction data set to demonstrate its ability to precisely predict the minimum energy paths of S2 chemical reactions, showcasing its portability and adaptability in chemical reaction modeling. Finally, visualizations of the electronic density generated by the framework faithfully replicate the physical phenomenon of electron density transfer. We believe that this framework has the potential to accelerate property predictions and high-throughput screening of functional materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.4c05519DOI Listing

Publication Analysis

Top Keywords

molecular properties
16
d3-imgnet framework
12
electron density
12
data set
12
based data-driven
8
data-driven electron
8
density images
8
predict molecular
8
deep learning
8
atomization energies
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!