A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Expanded Negative Electrostatic Network-Assisted Seawater Oxidation and High-Salinity Seawater Reutilization. | LitMetric

Coastal/offshore renewable energy sources combined with seawater splitting offer an attractive means for large-scale H electrosynthesis in the future. However, designing anodes proves rather challenging, as surface chlorine chemistry must be blocked, particularly at high current densities (). Additionally, waste seawater with increased salinity produced after long-term electrolysis would impair the whole process sustainability. Here, we convert seawater to O selectively, on hydroxides, by building phytate-based expanded negative electrostatic networks (ENENs) with electrostatically repulsive capacities and higher negative charge coverage ranges than those of common inorganic polyatomic anions. With surface ENENs, even typically unstable CoFe hydroxides perform nicely toward alkaline seawater oxidation at activities of >1 A cm. CoFe hydroxides with phytate-based ENENs exhibit prolonged lifespans of 1000 h at of 1 A cm and 900 h at of 2 A cm and thus rival the best seawater oxidation anodes. Direct introduction of trace phytates to seawater weakens corrosion tendency on conventional CoFe hydroxides as well, extending the life of hydroxides by ∼28 times at of 2 A cm. A wide range of materials all obtain prolonged lifetimes in the presence of ENENs, validating universal applicability. Mechanisms are studied using theoretical computations under working conditions and / characterizations. We demonstrate a potentially viable way to sustainably reutilize high-salinity wastewater, which is a long-standing but neglected issue. Series-connected devices exhibit good resistance to low temperature operation and are more eco-friendly than current organic electrolyte-based energy storage devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c14502DOI Listing

Publication Analysis

Top Keywords

seawater oxidation
12
cofe hydroxides
12
expanded negative
8
negative electrostatic
8
seawater
8
hydroxides
5
electrostatic network-assisted
4
network-assisted seawater
4
oxidation high-salinity
4
high-salinity seawater
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!