Efficient Expression and Activity Optimization of Manganese Peroxidase for the Simultaneous Degradation of Aflatoxins AFB, AFB, AFG, and AFG.

J Agric Food Chem

School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China.

Published: January 2025

Aflatoxins (AFs), notorious mycotoxins that pose significant risks to human and animal health, make biodegradation extremely crucial as they offer a promising approach to managing and reducing their harmful impacts. In this study, we identified a manganese peroxidase from (Mnp) through protein similarity analysis, which has the capability to degrade four AFs (AFB, AFB, AFG, and AFG) simultaneously. The gene encoding this enzyme was subject to codon optimization, followed by cold shock induction expression using the pColdII vector, leading to the soluble expression of manganese peroxidase (Mnp) in . This study tackled the problem of inclusion body formation that often occurs during Mnp expression in . After optimizing the degradation conditions, the degradation rates for AFB, AFB, AFG, and AFG were 87.9, 72.8, 77.3, and 85.6%, respectively. Molecular docking and molecular dynamics simulations indicated that Mnp facilitated the degradation of AFs through hydrophobic and polar interactions among various amino acid residues. This research offers novel insights into the rapid discovery of enzymes capable of degrading AFs and establishes a theoretical foundation for the efficient expression of mycotoxin detoxification enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.4c10047DOI Listing

Publication Analysis

Top Keywords

manganese peroxidase
12
afb afb
12
afb afg
12
afg afg
12
efficient expression
8
peroxidase mnp
8
afb
6
afg
6
expression activity
4
activity optimization
4

Similar Publications

Efficient Expression and Activity Optimization of Manganese Peroxidase for the Simultaneous Degradation of Aflatoxins AFB, AFB, AFG, and AFG.

J Agric Food Chem

January 2025

School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China.

Aflatoxins (AFs), notorious mycotoxins that pose significant risks to human and animal health, make biodegradation extremely crucial as they offer a promising approach to managing and reducing their harmful impacts. In this study, we identified a manganese peroxidase from (Mnp) through protein similarity analysis, which has the capability to degrade four AFs (AFB, AFB, AFG, and AFG) simultaneously. The gene encoding this enzyme was subject to codon optimization, followed by cold shock induction expression using the pColdII vector, leading to the soluble expression of manganese peroxidase (Mnp) in .

View Article and Find Full Text PDF

Manganese is one of the trace elements necessary for organisms to maintain normal biological activities and is also a cofactor for manganese superoxide dismutase (Mn-SOD) and manganese peroxidase (MnP). In order to find a simple and effective method to rejuvenate the degenerated strains, we explored the effect of the exogenous addition of MnSO on the antioxidant vigour and productivity of degenerated strains of . The results showed that the exogenous MnSO had no significant effect on the non-degenerated strain T0, but it could effectively increase the mycelial growth rate, mycelial biomass, and LBL decolouring ability of the degenerated strains T10 and T19, and reduce the production cycle and increased the biological efficiency of T10; it helped the severely degenerated T19 to regrow its fruiting body; and it also significantly increased the viability of the matrix-degrading enzymes such as EG, Lac, Xyl, etc.

View Article and Find Full Text PDF

Owing to the production of lignin-modifying enzymes (LMEs), white-rot fungi (WRF) such as polypores are potent organisms in the biodegradation of xenobiotic pollutants. The nonspecific function of LMEs including laccase and manganese peroxidase (MnP), has enabled the use of WRF in biotechnological applications, particularly in bioremediation. In this study, 12 strains from nine white-rot basidiomycete genera viz.

View Article and Find Full Text PDF

Microbial Diversity and Biodegradation Mechanism of Microorganisms in the Dingtao M2 Tomb.

Int J Mol Sci

November 2024

Key Laboratory of Archaeomaterials and Conservation, Ministry of Education, University of Science and Technology Beijing, Beijing 100083, China.

The Dingtao M2 tomb, the largest and best-preserved imperial "Huangchangticou" tomb in China, holds great significance for its conservation. Currently, varying degrees of microbial degradation are occurring on the surfaces of the M2 tomb. This study aimed to determine the microbial diversity of the M2 tomb and its surrounding environment during July 2021 and August 2022.

View Article and Find Full Text PDF

Polyethylene (PE), widely utilized in everyday life, is notorious for its protracted degradation period, extending over decades, presenting an environmental hazard. Recently, there has been growing interest in utilizing microorganisms to aid in PE decomposition. Molecular docking and molecular dynamics simulations are valuable tools for understanding specific mechanisms and conducting initial screenings to support experimental research in this context.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!