Purpose: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive fibrotic lung disorder characterized by dry cough, fatigue, and exacerbated dyspnea. The prognosis of IPF is notably unfavorable, becoming extremely poor when the disease advances acutely. Effective therapeutic intervention is essential to mitigate disease progression; hence, early diagnosis and treatment are paramount. When high-resolution computed tomography (HRCT) reveals usual interstitial pneumonia (UIP), a diagnosis of IPF can be established. However, when HRCT fails to conclusively confirm IPF, the diagnostic pathway becomes intricate and necessitates a multidisciplinary approach involving clinicians, radiologists, and pathologists. Consequently, the objective of this study was to investigate new diagnostic approaches through bronchoalveolar lavage (BAL) analysis.
Methods: BAL is a commonly utilized diagnostic tool for interstitial lung diseases. We review the application of bronchoalveolar lavage (BALF) in idiopathic pulmonary fibrotic disease, emphasizing that the cellular and solute composition of the lower respiratory tract offers valuable insights.
Results: This review delineates the advancements in diagnosing IPF cases that remain indeterminate via HRCT, leveraging BALF analysis. In contrast to surgical lung biopsy, BAL is minimally invasive and offers potential diagnostic utility through the identification of specific BALF biomarkers.
Conclusion: Augment the clinical diagnostic armamentarium for IPF, particularly in scenarios where HRCT findings are inconclusive.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00408-024-00758-3 | DOI Listing |
As an advanced nucleic acid therapeutical modality, mRNA can express any type of protein in principle and thus holds great potential to prevent and treat various diseases. Despite the success in COVID-19 mRNA vaccines, direct local delivery of mRNA into the lung by inhalation would greatly reinforce the treatment of pulmonary pathogens and diseases. Herein, we developed lipid nanoparticles (LNPs) from degradable ionizable glycerolipids for potent pulmonary mRNA delivery via nebulization.
View Article and Find Full Text PDFTalanta
December 2024
School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India. Electronic address:
The electrochemical biosensor has brought a paradigm shift in the field of sensing due to its fast response and easy operability. The performance of electrochemical sensors can be modified by coupling them with various metal oxides, nanomaterials, and nanocomposites. Hydrogen peroxide is a short-lived reactive oxygen species that plays a crucial role in various physiological and biological processes.
View Article and Find Full Text PDFLung
January 2025
Department of Respiratory Medicine, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, People's Republic of China.
Purpose: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive fibrotic lung disorder characterized by dry cough, fatigue, and exacerbated dyspnea. The prognosis of IPF is notably unfavorable, becoming extremely poor when the disease advances acutely. Effective therapeutic intervention is essential to mitigate disease progression; hence, early diagnosis and treatment are paramount.
View Article and Find Full Text PDFLung
January 2025
Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
Background: The antibiotic resistance of Pseudomonas aeruginosa (PA) is increasingly severe in bronchiectasis patients. However, there is currently a lack of research on the clinical outcomes of carbapenem-resistant PA (CRPA) isolation in hospitalized exacerbations of bronchiectasis (HEB) patients. We investigated the incidence, risk factors, and clinical outcomes of PA and CRPA isolation in HEB patients.
View Article and Find Full Text PDFCancer Immunol Immunother
January 2025
Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University Wexner Medical Center, 241 W 11th Ave, Suite 5000, Columbus, OH, 43201, USA.
Background: Checkpoint inhibitor pneumonitis (CIP) that develops following immune checkpoint inhibitor (ICI) treatment can be difficult to distinguish from other common etiologies of lung inflammation in cancer patients. Here, we evaluate the bronchoalveolar lavage fluid (BAL) for potential biomarkers specific to CIP.
Methods: We conducted a retrospective study of patients who underwent standard of care bronchoscopy to compare the cytokines of interest between patients with and without CIP and with and without immune-mediated pulmonary diseases.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!