A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development and Validation of a Neurosurgical Phantom for Simulating External Ventricular Drain Placement. | LitMetric

This study aimed to develop and validate a cost-effective, customizable patient-specific phantom for simulating external ventricular drain placement, combining image segmentation, 3-D printing and molding techniques. Two variations of the phantom were created based on patient MRI data, integrating a realistic skin layer with anatomical landmarks, a 3-D printed skull, an agarose polysaccharide gel brain, and a ventricular cavity. To validate the phantom, 15 neurosurgeons, residents, and physician assistants performed 30 EVD placements. The effectiveness of the phantom as a training tool was assessed through a standardized user experience questionnaire, which evaluated the physical attributes, realism, and overall satisfaction. The mechanical properties of the phantom brain were quantified by measuring catheter insertion forces using a linear force tester to compare them to those experienced in real brain tissue. The study participants successfully completed EVD placements with a 76.7% optimal placement rate, which aligns with rates observed in clinical practice. Feedback highlighted the anatomical accuracy of the phantom and its value in enhancing surgical skills, though it also identified areas for improvement, particularly in the realism of the skin layer. Mechanical testing demonstrated that the insertion forces required were comparable to those encountered in actual brain tissue. The developed phantom offers a realistic, low-cost, and adaptable model for EVD simulation. This tool is particularly beneficial for both training and research, with future enhancements planned to improve the realism of the skin and incorporate more anatomical features to increase the fidelity of the simulation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10916-024-02133-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698783PMC

Publication Analysis

Top Keywords

phantom
8
phantom simulating
8
simulating external
8
external ventricular
8
ventricular drain
8
drain placement
8
skin layer
8
evd placements
8
insertion forces
8
brain tissue
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!