The negative impact of repeated-mild traumatic brain injury (rmTBI) is profoundly seen in circadian-disrupted individuals. The unrelenting inflammation, glial activation, and gut dysbiosis are key neuropathological aberrations in the aftermath of rmTBI. In this study, we examined the impact of chitosan lactate (CL) on circadian disturbance (CD) + rmTBI-generated neurological dysfunctions and its prebiotic response on the gut-brain axis. Adult C57BL/6 mice were exposed to circadian disruption (CD) prior to rmTBI insults. The neurobehavioral changes were assessed by rotarod, open-field test (OFT), elevated zero maze (EZM), forced-swim test (FST), Y-maze, and novel object recognition test (NORT). The inflammatory, neuronal, and synaptic markers in the frontal cortex and hippocampus, and cecal gut microbiota phylum were examined using RT-PCR and western blotting. The goblet cells, tight junction proteins (occludin and zona occludens-1), and short-chain fatty acids (SCFAs) were analyzed using immunohistochemistry, alcian-blue PAS staining, and H-NMR methods. Mice exposed to CD + rmTBI (CDR) displayed robust neurological dysfunctions in rotarod, anxiety- and depressive-like behavior in EZM and FST, and cognition deficits in Y-maze and NORT. Administration of CL (1 and 3 mg/kg) mitigated the above neurobehavioral abnormalities. CL treatment also normalized the levels of inflammatory markers (NF-κB, IL-6, IL-18, and TNF-α), brain-derived neurotrophic factor, and neuronal/synaptic proteins (doublecortin, synaptophysin, and postsynaptic density protein-95). Increased goblet cells and tight junction proteins in the colon and SCFAs in the cecal samples indicated improved gut integrity following CL treatment. The results indicate that CL mitigated CDR-inflicted neurological abnormalities in mice by modulating neuroinflammation and gut-brain interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11011-024-01517-2 | DOI Listing |
Acta Neuropathol Commun
January 2025
Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China.
Mutations in the ANXA11 gene, encoding an RNA-binding protein, have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), but the underlying in vivo mechanisms remain unclear. This study examines the clinical features of ALS patients harboring the ANXA11 hotspot mutation p.P36R, characterized by late-onset motor neuron disease and occasional multi-system involvement.
View Article and Find Full Text PDFNeurol Ther
January 2025
Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.
Hereditary transthyretin amyloidosis (ATTRv, v for variant) is a genetic disorder characterized by the deposition of misfolded transthyretin (TTR) protein in tissues, resulting in progressive dysfunction of multiple organs, including the nervous system, heart, kidneys, and gastrointestinal (GI) tract. Noninvasive serum biomarkers have become key tools for diagnosing and monitoring ATTRv. This review examines the role of available biomarkers for neurological, cardiac, renal, gastrointestinal, and multisystemic involvement in ATTRv.
View Article and Find Full Text PDFCortex
December 2024
Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Japan.
The applause sign (AS) is a recognized phenomenon observed in progressive supranuclear palsy (PSP) and other neurological conditions where individuals produce over three claps following a request to clap only thrice after a demonstration. In this study, we introduced a novel linguistic phenomenon termed the oral applause sign (OAS) associated with the AS. The OAS is characterized by increased repetition counts of Japanese repetitive onomatopoeic words, such as uttering "pata-pata-pata" instead of the expected "pata-pata.
View Article and Find Full Text PDFClin Exp Med
January 2025
Pediatrics, Western University, London, ON, Canada.
Sepsis is a major cause of morbidity and mortality worldwide. Among the various types of end-organ damage associated with sepsis, hepatic injury is linked to significantly higher mortality rates compared to dysfunction in other organ systems. This study aimed to investigate potential biomarkers of hepatic injury in sepsis patients through a multi-center, case-control approach.
View Article and Find Full Text PDFMetab Brain Dis
January 2025
Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India.
The negative impact of repeated-mild traumatic brain injury (rmTBI) is profoundly seen in circadian-disrupted individuals. The unrelenting inflammation, glial activation, and gut dysbiosis are key neuropathological aberrations in the aftermath of rmTBI. In this study, we examined the impact of chitosan lactate (CL) on circadian disturbance (CD) + rmTBI-generated neurological dysfunctions and its prebiotic response on the gut-brain axis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!