Towards effective functionalization of nanopores/nanochannels: the role of amidation reactions.

Chem Commun (Camb)

State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.

Published: January 2025

In recent years, researchers have drawn inspiration from natural ion channels to develop various artificial nanopores/nanochannels, including solid-state and biological. Through imitating the precise selectivity and single molecule sensing exhibited by natural ion channels, nanopores/nanochannels have been widely used in many fields, such as analyte detection, gene sequencing and so on. In these applications, the surface functionalization of nanopores/nanochannels directly determines the effectiveness in quantitative analysis and single molecule detection. To explore the modification of different probes on nanopores/nanochannels, this review emphasizes the functionalization of nanopores/nanochannels using small molecules, peptides, nucleic acids, composite molecules and proteins through amidation reactions. In addition, we also present perspectives on the developmental prospects of nanopores, with the goal of enhancing our understanding of nanopore sensing technologies and their functionalization strategies. We have noted that this covalent reaction strategy provides an efficient, versatile and stable modification method for biological and solid-state nanopores/nanochannels.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cc06316cDOI Listing

Publication Analysis

Top Keywords

functionalization nanopores/nanochannels
12
amidation reactions
8
natural ion
8
ion channels
8
single molecule
8
nanopores/nanochannels
7
effective functionalization
4
nanopores/nanochannels role
4
role amidation
4
reactions years
4

Similar Publications

Towards effective functionalization of nanopores/nanochannels: the role of amidation reactions.

Chem Commun (Camb)

January 2025

State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.

In recent years, researchers have drawn inspiration from natural ion channels to develop various artificial nanopores/nanochannels, including solid-state and biological. Through imitating the precise selectivity and single molecule sensing exhibited by natural ion channels, nanopores/nanochannels have been widely used in many fields, such as analyte detection, gene sequencing and so on. In these applications, the surface functionalization of nanopores/nanochannels directly determines the effectiveness in quantitative analysis and single molecule detection.

View Article and Find Full Text PDF

Nanopore/nanochannel sensing is a promising analytical method in the fields of chemistry and biology. However, due to the interference of non-analytes in complex samples, directly analyzing un-pretreated samples through nanopores/nanochannels remains a great challenge. Here, we report a type of heterogeneous membrane by covering anodic aluminum oxide (AAO) cylindrical nanochannel porous membrane with graphene oxide/calcium alginate (GCA) hybrid hydrogel to reduce the interference of protein on the current detection signal.

View Article and Find Full Text PDF

Solid-State Nanopore/Nanochannel Sensors with Enhanced Selectivity through Pore-in Modification.

Anal Chem

February 2024

State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.

Nanopore sensing technology, as an emerging analytical method, has the advantages of simple operation, fast output, and label-free and has been widely used in fields such as protein analysis, gene sequencing, and biomarker detection. Inspired by biological ion channels, scientists have prepared various artificial solid-state nanopores/nanochannels. Biological ion channels have extremely high ion transport selectivity, while solid-state nanopores/nanochannels have poor selectivity.

View Article and Find Full Text PDF

Solid-State Nanopore/Nanochannel Sensing of Single Entities.

Top Curr Chem (Cham)

April 2023

School of Electrical Engineering, University of South China, Hengyang, 421001, People's Republic of China.

Solid-state nanopores/nanochannels, with their high stability, tunable geometry, and controllable surface chemistry, have recently become an important tool for constructing biosensors. Compared with traditional biosensors, biosensors constructed with solid-state nanopores/nanochannels exhibit significant advantages of high sensitivity, high specificity, and high spatiotemporal resolution in the detection single entities (such as single molecules, single particles, and single cells) due to their unique nanoconfined space-induced target enrichment effect. Generally, the solid-state nanopore/nanochannel modification method is the inner wall modification, and the detection principles are the resistive pulse method and the steady-state ion current method.

View Article and Find Full Text PDF

The combination of DNA nanotechnology and nanopore sensing technology has greatly promoted research on target molecule or ion detection. The large solid-state nanopores/nanochannels show better mechanical stability and reproducibility, but metal ion detection in the large nanopores with diameters of hundreds of nanometers or several micrometers is rarely reported. Hence, it is meaningful and urgent to develop a large nanopore-based sensing platform for the detection of metal ions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!