Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
During the transition from fresh waters to terrestrial habitats, significant adaptive changes occurred in kidney function of vertebrates to cope with varying osmotic challenges. We investigated the mechanisms driving water conservation in the mammalian nephron, focusing on the relative contributions of active ion transport and Starling forces. We constructed a thermodynamic model to estimate the entropy generation associated with different processes within the nephron, and analyzed their relative importance in urine formation. We demonstrate that active ionic reabsorption exerts a pressure above 15,000 torr, a value more than 500 times greater than Starling forces. The entropy generation of the reabsorption process is found to be 20-fold higher than that of renal blood perfusion. These findings imply that the evolutionary history of vertebrates, particularly terrestrial mammals, has shaped the renal architecture to prioritize water conservation by means of an entropically costly process. This approach to the nephron function provides insights into the physiological adaptations of terrestrial vertebrates to conserve water and sheds light on the intricate interplay between environmental conditions and evolutionary responses in renal physiology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00360-024-01599-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!