Basic Science and Pathogenesis.

Alzheimers Dement

Taipei Medical University, Taipei, Taiwan.

Published: December 2024

Understanding the physiological connection between platelets and brain function reveals new paradigms in neurodegenerative disease treatment. Platelets, traditionally associated with hemostasis, but also sometimes regarded as a mirror of neurons in the blood circulation, also encompass a spectrum of neurobiological roles, including neuroinflammation modulation, neurogenesis, and synaptic remodeling. These roles are primarily mediated through a rich array of bioactive molecules and extracellular vesicles (EVs), capable of traversing the blood-brain barrier. Intriguing research work underscores the therapeutic potential of human platelet lysates (HPL) in neurodegenerative conditions such as Alzheimer's disease (AD). Platelets contain numerous neurotrophic factors (including BDNF, PDGF, or TGF-β), cytokines (including PF4 and CCL5), as well as antioxidants (GPX, catalase) and anti-inflammatory molecules which are instrumental in neuronal survival, repair, and regeneration. The administration of HPL has demonstrated beneficial effects in preclinical models of AD, Parkinson's disease, traumatic brain injury, and amyotropic lateral sclerosis indicating its potential as a novel, pragmatic, and accessible therapeutic strategy. This presentation highlights the mechanisms underlying platelet-brain interactions, focusing on how platelet-derived bioactive molecules and EVs contribute to neuroprotection, anti-inflammation, and neurorestoration. We will discuss the implications of these findings in developing new therapeutic approaches for AD and other neurodegenerative diseases, emphasizing the translational potential of platelet lysates in clinical settings. The safety, quality, and regulatory considerations for clinical application of HPL will also be addressed, highlighting the need for further research in this promising field.

Download full-text PDF

Source
http://dx.doi.org/10.1002/alz.083403DOI Listing

Publication Analysis

Top Keywords

bioactive molecules
8
platelet lysates
8
basic science
4
science pathogenesis
4
pathogenesis understanding
4
understanding physiological
4
physiological connection
4
connection platelets
4
platelets brain
4
brain function
4

Similar Publications

New semisynthetic α-glucosidase inhibitor from a doubly-chemically engineered extract.

Nat Prod Bioprospect

January 2025

Consejo Nacional de Investigaciones Científicas y Técnicas, Suipacha 531, S2002LRK, Rosario, Argentina.

Chemically engineered extracts represent a promising source of new bioactive semi-synthetic molecules. Prepared through direct derivatization of natural extracts, they can include constituents enriched with elements and sub-structures that are less common in natural products compared to drugs. Fourteen such extracts were prepared through sequential reactions with hydrazine and a fluorinating reagent, and their α-glucosidase inhibition properties were compared.

View Article and Find Full Text PDF

Constructing coral reef-like imprinted structure on molecularly imprinted nanocomposite membranes based on nanospheres with hydrophilic multicores for selective separation of acteoside.

J Chromatogr A

December 2024

School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China. Electronic address:

Molecularly imprinted nanocomposite membranes (MINMs) have shown great superiority in selective separation of acteoside (ACT) from phenylethanoid glycosides in Cistanche tubulosa. Herein, ACT-based MINMs (A-MINMs) with coral reef-like imprinted structure were proposed and developed for specifically separating ACT molecules. The nanospheres with hydrophilic multicores (NHMs) were introduced into polyvinylidene fluoride (PVDF) powders to obtain NHMs@PVDF membranes by a phase inversion method.

View Article and Find Full Text PDF

Multiple sphingolipid-metabolizing enzymes modulate influenza virus replication.

Virology

December 2024

Departments of Surgery & Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, 65212, USA. Electronic address:

The sphingolipid network is sustained principally by the balance of bioactive sphingolipid molecules and their regulation by sphingolipid-metabolizing enzymes. The components in the lipid system display key functions in numerous cellular and disease conditions including virus infections. During the COVID-19 pandemic, there was a fruitful effort to use an inhibitor that blocks the activity of sphingosine kinase (SphK) 2 to cure the devastating disease.

View Article and Find Full Text PDF

Secupyritines A‒C are unique polycyclic Securinega alkaloids isolated from medicinal plant Flueggea suffruticosa. They feature a distinctive 6/6/6/5/6 fused pentacyclic ring system with a highly strained 2-oxa-6-aza[4.4.

View Article and Find Full Text PDF

This study investigates the phenolic compounds (PC), volatile compounds (VC), and fatty acids (FA) of extra virgin olive oil (EVOO) derived from the Turkish olive variety "Sarı Ulak", along with ADMET, DFT, molecular docking, and gene network analyses of significant molecules identified within the EVOO. Chromatographic methods (GC-FID, HPLC) were employed to characterize FA, PC, and VC profiles, while quality parameters, antioxidant activities (TAC, ABTS, DPPH) were assessed via spectrophotometry. The analysis revealed a complex composition of 40 volatile compounds, with estragole, 7-hydroxyheptene-1, and 3-methoxycinnamaldehyde as the primary components.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!