This study assessed the geogenic radon potential using PECAME, an innovative tool designed to simultaneously measure soil-gas permeability and CO concentration - two key parameters for understanding radon transport in soil. Comparative field studies using the RADON-JOK device in various geological settings in Japan and Poland demonstrate the effectiveness of PECAME. These studies reveal a strong correlation between PECAME and RADON-JOK, with an R value of 0.94 for flow rate of 3.5 dm min . Since the soil-gas Rn concentration and permeability were measured simultaneously, the geogenic radon potential was calculated. Most measured points fall within the low to medium radon index zones, with two exceptions near active faults located in the high zone. Therefore, permeability and CO measurements using PECAME may facilitate further research in Japan to develop a comprehensive geogenic radon potential map.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-024-13594-y | DOI Listing |
Environ Monit Assess
January 2025
Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, Krakow, PL-31342, Poland.
This study assessed the geogenic radon potential using PECAME, an innovative tool designed to simultaneously measure soil-gas permeability and CO concentration - two key parameters for understanding radon transport in soil. Comparative field studies using the RADON-JOK device in various geological settings in Japan and Poland demonstrate the effectiveness of PECAME. These studies reveal a strong correlation between PECAME and RADON-JOK, with an R value of 0.
View Article and Find Full Text PDFJ Hazard Mater
November 2024
Department of Earth and Environmental Sciences, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea. Electronic address:
Environ Sci Pollut Res Int
November 2024
Istituto Nazionale Di Geofisica E Vulcanologia, Via Di Vigna Murata 605, 00143, Rome, Italy.
The urbanized area of Rome is largely built over volcanic deposits, characterized by a significant radionuclides content and consequently a high radon emanation potential. An accurate monitoring of workplaces and residential dwellings constitutes a first step towards mitigating the indoor radon exposure. Since radon diffusion dynamics involves complex interactions among many environmental parameters on different time scales, a proper assessment of radon concentration variations can be better achieved by means of active monitoring approaches.
View Article and Find Full Text PDFSci Total Environ
December 2024
School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran.
The geogenic radon hazard index (GRHI) map plays a crucial role in evaluating radon exposure risks. The construction of this map requires a comprehensive analysis of radon levels in soil gas and some critical factors, such as uranium content in bedrock, soil permeability, and geological inhomogeneities. In this context, the spatial multi-criteria decision analysis is proposed with the aim of combining various key geological parameters and identifying high-potential radon areas.
View Article and Find Full Text PDFEnviron Health Perspect
September 2024
Section Radon and NORM, Federal Office for Radiation Protection (BfS), Berlin, Germany.
Background: Radon is a carcinogenic, radioactive gas that can accumulate indoors and is undetected by human senses. Therefore, accurate knowledge of indoor radon concentration is crucial for assessing radon-related health effects or identifying radon-prone areas.
Objectives: Indoor radon concentration at the national scale is usually estimated on the basis of extensive measurement campaigns.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!