Background: Individuals with Down syndrome (DS) have an increased genetic risk of developing Alzheimer's disease (AD), with most adults developing AD neuropathology in their 40s. Despite having a low frequency of systemic vascular risk factors such as hypertension and atherosclerosis, adults with DS display cerebrovascular pathology, including microbleeds, microinfarcts, and cerebral amyloid angiopathy. This suggests that blood-brain barrier (BBB) integrity may be compromised allowing the extravasation of blood proteins in the brain parenchyma. The blood coagulation factor fibrin promotes immune-mediated neurodegeneration and is a marker of BBB disruption in a wide range of neurological diseases. This study investigated the severity of fibrin deposition as a measure of BBB integrity in the brains of adults with DS and AD pathology (DSAD). We hypothesized that fibrin deposition is increased in DSAD in comparison to neurotypical controls without DS or AD.

Method: Fibrin immunoreactivity was assessed by free-floating immunohistochemistry in 30µm tissue sections from the occipital cortex from neurotypical controls (n = 12; 41-65 years old) and DSAD (n = 12; 46-66 years old). Using whole slide imaging, brain sections were digitized, and the severity of fibrin deposition was scored using Aperio Imagescope.

Result: Individuals with DSAD display significantly higher fibrin deposition in the white and grey matter of the occipital cortex in comparison to the age-matched neurotypical controls (p<0.0001).

Conclusion: Neurotypical controls display minimal fibrin deposition in the brain parenchyma and perivascular space. However, compared to neurotypical controls, adults with DS at advanced stages of AD neuropathology display significant fibrin deposition in the occipital cortex, suggesting that the BBB may be compromised in this population.

Funding: NIH U19AG068054, RF1AG079519, P30AG066519 and 23AARFD-1022715.

Download full-text PDF

Source
http://dx.doi.org/10.1002/alz.089882DOI Listing

Publication Analysis

Top Keywords

fibrin deposition
16
neurotypical controls
12
bbb integrity
8
severity fibrin
8
occipital cortex
8
fibrin
6
basic science
4
science pathogenesis
4
pathogenesis background
4
background individuals
4

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Gladstone Institutes, UCSF, San Francisco, CA, USA.

Background: Cerebrovascular alterations and innate immune activation are key features of Alzheimer's disease (AD). However, the mechanisms that link blood-brain barrier disruption to neurodegeneration are poorly understood and well-defined druggable targets at the neurovascular interface are limited.

Method: By developing a multiomic and genetic loss-of-function pipeline, we reported the transcriptomic and global phosphoproteomic landscape of blood-induced microglia activation and the causal role for fibrin in induction of neurodegenerative genes and oxidative stress pathways in innate immune cells.

View Article and Find Full Text PDF

Background: Individuals with Down syndrome (DS) have an increased genetic risk of developing Alzheimer's disease (AD), with most adults developing AD neuropathology in their 40s. Despite having a low frequency of systemic vascular risk factors such as hypertension and atherosclerosis, adults with DS display cerebrovascular pathology, including microbleeds, microinfarcts, and cerebral amyloid angiopathy. This suggests that blood-brain barrier (BBB) integrity may be compromised allowing the extravasation of blood proteins in the brain parenchyma.

View Article and Find Full Text PDF

Inspect quantitative signals in placental histopathology: Computer-assisted multiple functional tissues identification through multi-model fusion and distillation framework.

Comput Med Imaging Graph

December 2024

Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai 200241, China. Electronic address:

Pathological analysis of placenta is currently a valuable tool for gaining insights into pregnancy outcomes. In placental histopathology, multiple functional tissues can be inspected as potential signals reflecting the transfer functionality between fetal and maternal circulations. However, the identification of multiple functional tissues is challenging due to (1) severe heterogeneity in texture, size and shape, (2) distribution across different scales and (3) the need for comprehensive assessment at the whole slide image (WSI) level.

View Article and Find Full Text PDF
Article Synopsis
  • Antiphospholipid antibody syndrome (APS) is an autoimmune disease that causes blood vessel problems and can lead to serious kidney damage known as nephropathy.
  • Researchers tested a Tyk2 inhibitor, BMS-986202, on mice with APS nephropathy to assess its effects on the disease.
  • The study found that Tyk2 inhibition not only improved kidney function and reversed harmful changes in the kidneys, but also reduced the type I interferon (IFN) signature associated with the disease, indicating a potential new treatment approach for APS nephropathy.
View Article and Find Full Text PDF

Antiphospholipid syndrome (APS) is associated with recurrent pregnancy morbidity, yet the underlying mechanisms remain elusive. We performed multifaceted characterization of the biological and transcriptomic signatures of mouse placenta and uterine natural killer (uNK) cells in APS. Histological analysis of APS placentas unveiled placental abnormalities, including disturbed angiogenesis, occasional necrotic areas, fibrin deposition, and nucleated red blood cell enrichment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!