Background: In cerebral amyloid angiopathy, amyloid beta accumulates within the walls of blood vessels and contributes to impaired vascular integrity and function. In this work, we observe that tau protein similarly builds up along blood vessels in Alzheimer's disease brain.

Method: We obtained frozen inferior temporal cortex from the Massachusetts Alzheimer's Disease Research Center from n = 7 neuropathological confirmed Alzheimer's disease donors and n = 6 normal aging controls. Three-dimensional histology was carried out by cutting thick tissue sections (0.5 - 1 mm) on a vibratome, clearing them using a modified CLARITY protocol, and immunolabeling for blood vessels, tau, neurons, and smooth muscle cells. Whole images were collected on a confocal or light sheet microscope and quantitatively examined using a combination of virtual reality tracing, MATLAB and Imaris. Adjacent tissues and isolated blood vessels were also measured for tau and phospho-tau species using capillary western blotting to confirm imaging results.

Result: In total, n = 107 Alzheimer's disease and n = 127 control blood vessels were examined using three-dimensional histology. Nearly all measured blood vessels in AD brain had regions of enhanced tau accumulation at the vascular surface (within 3 microns). Tau associated with blood vessels was found throughout cortical layers I-V and was observed to be primarily located on arterioles. Further, isolated blood vessels were significantly enriched for the tau N-terminus and phospho-tau 181 and 217.

Conclusion: These data indicate that tau accumulates on blood vessels in the Alzheimer's disease brain to a greater extent than previously appreciated. Further, they highlight the utility of three-dimensional histology methods for visualizing and quantifying novel relationships between features in the brain.

Download full-text PDF

Source
http://dx.doi.org/10.1002/alz.085808DOI Listing

Publication Analysis

Top Keywords

blood vessels
36
alzheimer's disease
20
three-dimensional histology
12
blood
9
vessels
9
vessels alzheimer's
8
isolated blood
8
tau
7
alzheimer's
5
disease
5

Similar Publications

Malaria monoclonals block brain binding.

Trends Parasitol

January 2025

Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia; Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia.

In Plasmodium falciparum malaria, infected cells accumulate in blood vessels of organs, including the brain. Recently, Reyes et al. identified monoclonal antibodies that stop infected cells from binding to the endothelial protein C receptor (EPCR) in a model of brain blood vessels.

View Article and Find Full Text PDF

A microanatomical study of the precentral cerebral wall in human fetuses of the second trimester with ventriculomegaly and corpus callosal dysgenesis.

Clin Neurol Neurosurg

December 2024

Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India. Electronic address:

Background: The complex structure and function of the cerebrum make it a key focus in neuroscience research. It develops from telencephalic vesicles through processes such as cell growth, division, and migration from the neuroepithelium's ventricular matrix, forming the six-layered isocortex or neocortex. Multipotent neuroepithelial cells give rise to both neuronal and glial precursors, which populate the cerebral cortex.

View Article and Find Full Text PDF

The cerebral blood flow response to neuroactivation is reduced in cognitively normal men with β-amyloid accumulation.

Alzheimers Res Ther

January 2025

Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Valdemar Hansens Vej 1-23, Glostrup, 2600, Denmark.

Background: Accumulation of β-amyloid (Aβ) in the brain is a hallmark of Alzheimer's Disease (AD). Cerebral deposition of Aβ initiates deteriorating pathways which eventually can lead to AD. However, the exact mechanisms are not known.

View Article and Find Full Text PDF

Semaglutide restores astrocyte-vascular interactions and blood-brain barrier integrity in a model of diet-induced metabolic syndrome.

Diabetol Metab Syndr

January 2025

Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation-Fiocruz, Campus Maré. Centro de Pesquisa, Inovação e Vigilância em Covid-19 e Emergências Sanitárias. Endereço: Av. Brasil, 4036-Bloco 2. Manguinhos, Rio de Janeiro, RJ, CEP 21040-361, Brazil.

Introduction: Metabolic syndrome (MetS) is a metabolic disorder related to obesity and insulin resistance and is the primary determinant of the development of low-intensity chronic inflammation. This continuous inflammatory response culminates in neuroimmune-endocrine dysregulation responsible for the metabolic abnormalities and morbidities observed in individuals with MetS. Events such as the accumulation of visceral adipose tissue, increased plasma concentrations of free fatty acids, tissue hypoxia, and sympathetic hyperactivity in individuals with MetS may contribute to the activation of the innate immune response, which compromises cerebral microcirculation and the neurovascular unit, leading to the onset or progression of neurodegenerative diseases.

View Article and Find Full Text PDF

Objective: This study aimed to investigate and compare the histological response of rabbit dental pulp after direct pulp capping with 3 different materials: mineral trioxide aggregate (MTA), nanoparticles of fluorapatite (Nano-FA), and nanoparticles of hydroxyapatite (Nano-HA) after 4 and 6-week time intervals.

Material And Methods: A total of 72 upper and lower incisor teeth from 18 rabbits were randomly categorized into 3 groups)24 incisors from six rabbits each. MTA Group: teeth were capped with MTA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!