Background: Tauopathies, including Alzheimer's Disease and Frontotemporal Dementia, are characterized as intracellular lesions composed of aggregated tau proteins. Soluble tau oligomers are shown to be one of the most toxic species and are responsible for the spread of tau pathology. Recent studies have found that several proteins such as amyloid b, a-synuclein, and TDP-43 can aggregate tau. In this study, we investigated the ability of small metabolites like C9orf72 associated dipeptide protein repeats (DPRs) to interact with and aggregate tau to form toxic soluble tau oligomers.

Method: We have developed various models which express dipeptide protein repeats to understand the interaction between short peptides and tau. The dipeptide protein repeat induced tau aggregates were characterized using biophysical, as well as biochemical assays in vitro and in cellular models. Furthermore, we evaluated their toxicity, and seeding potency to understand the biological effects of this interaction.

Result: Our results suggest the propensity for DPRs, especially glycine-arginine and proline-arginine repeats to form oligomeric structures which interact and seed tau in a prion like fashion. This leads to the production of tau oligomers causing alterations in the microtubule dynamics in cell lines as well as primary neuronal culture systems.

Conclusion: Many studies have investigated the toxicity of small protein repeats, however, the role of DPR oligomers in inducing tau aggregation is still unclear. Thus, the ability to understand the toxic interplay between small peptide repeats and tau oligomers has great potential to further the understanding of tau progression and aid in the development of targeted therapeutics.

Download full-text PDF

Source
http://dx.doi.org/10.1002/alz.093234DOI Listing

Publication Analysis

Top Keywords

tau
13
tau oligomers
12
dipeptide protein
12
protein repeats
12
soluble tau
8
aggregate tau
8
repeats
5
basic science
4
science pathogenesis
4
pathogenesis background
4

Similar Publications

Unipolar Barrier Photodetectors Based on Van Der Waals Heterostructure with Ultra-High Light On/Off Ratio and Fast Speed.

Adv Sci (Weinh)

January 2025

Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei, 230601, China.

Unipolar barrier architecture is designed to enhance the photodetector's sensitivity by inducing highly asymmetrical barriers, a higher barrier for blocking majority carriers to depressing dark current, and a low minority carrier barrier without impeding the photocurrent flow through the channel. Depressed dark current without block photocurrent is highly desired for uncooled Long-wave infrared (LWIR) photodetection, which can enhance the sensitivity of the photodetector. Here, an excellent unipolar barrier photodetector based on multi-layer (ML) graphene (G) is developed, WSe, and PtSe (G-WSe-PtSe) van der Waals (vdW) heterostructure, in which extremely low dark current of 1.

View Article and Find Full Text PDF

Changes in brain mitochondrial metabolism are coincident with functional decline; however, direct links between the two have not been established. Here, we show that mitochondrial targeting via the adiponectin receptor activator AdipoRon (AR) clears neurofibrillary tangles (NFTs) and rescues neuronal tauopathy-associated defects. AR reduced levels of phospho-tau and lowered NFT burden by a mechanism involving the energy-sensing kinase AMPK and the growth-sensing kinase GSK3b.

View Article and Find Full Text PDF

Enhancing the growth and essential oil components of Lavandula latifolia using Malva parviflora extract and humic acid as biostimulants in a field experiment.

Sci Rep

January 2025

Department of Floriculture, Ornamental Horticulture and Garden Design, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt.

Natural extracts as biostimulants have the potential to enhance the productivity and growth of many medicinal and aromatic plants. This study aimed to enhance the growth, and essential oil (EO) content, as well as composition of Lavandula latifolia Medik. by using Malva parviflora L.

View Article and Find Full Text PDF

Amyloidogenic protein aggregation is a pathological hallmark of Alzheimer's Disease (AD). As such, this critical feature of the disease has been instrumental in guiding research on the mechanistic basis of disease, diagnostic biomarkers and preventative and therapeutic treatments. Here we review identified molecular triggers and modulators of aggregation for two of the proteins associated with AD: amyloid beta and tau.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disease that primarily affects the elderly population and is the leading cause of dementia. Meanwhile, the vascular hypothesis suggests that vascular damage occurs in the early stages of the disease, leading to neurodegeneration and hindered waste clearance, which in turn triggers a series of events including the accumulation of amyloid plaques and Tau protein tangles. Non-coding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), have been found to be involved in the regulation of AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!