Background: Alzheimer's Disease (AD) is a neurodegenerative proteinopathy in which Aβ can misfold and aggregate into seeds that structurally corrupt native proteins, mimicking a prion-like process. These amyloid aggregation and propagation processes are influenced by three factors: the origin of the Aβ seed, time of incubation and host. However, the mechanism underlying the differential effect of each factor is poorly known. Previous studies have shown that the Aβ source is relevant for the amyloid process, since its pathogenicity is different according to its origin. Furthermore, recent evidence suggests that microglia plays a key role in the amyloidogenic event, and can modulate the propagation and aggregation process. Here, we seek to perform a comparative study to determine whether Aβ seeds from humans vs a familial AD line (the 3xTg-AD model) are more efficient to generate amyloid aggregates, as well as the role of the microglia in the propagation process.

Method: Amyloid seeds from AD patient (stage C for amyloid; from the Alzheimer's Disease Research Center at UCI) and 25 mo-3xTg-AD mice were injected into the hippocampus of 7-8-month-old 3xTg-AD mice. They were analyzed 10 months post-surgery for amyloid and microglia markers.

Results: Our findings demonstrated that amyloid seeds from the human patient seem to induce a more aggressive amyloid pathology compared to seeds from aged 3xTg-AD mice. Moreover, human and mice seeds differentially affect the presence of plaque-associated microglia in 3xTg-AD mice.

Conclusion: These results suggest that seeds from human patients seem to be more amyloidogenic than from aged 3xTg-AD mice, and also microglia cells may play a key role in this differential effect. Therefore, more profound understanding these factors will provide key insight on how amyloid pathology progresses in AD.

Funding: This study was supported by Minister of Science and Innovation grant PID2019-108911RA-100 (D.B.V.), Alzheimer's Association grant AARG-22-928219 (D.B.V), Beatriz Galindo program BAGAL18/00052 (D.B.V.) and Institute of Health Carlos III (ISCiii) grant PI18/01557 (A.G.) co-financed by FEDER funds from European Union.

Download full-text PDF

Source
http://dx.doi.org/10.1002/alz.092512DOI Listing

Publication Analysis

Top Keywords

3xtg-ad mice
12
amyloid
9
alzheimer's disease
8
key role
8
amyloid seeds
8
seeds human
8
amyloid pathology
8
aged 3xtg-ad
8
seeds
7
microglia
5

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Laboratory of Neuroscience (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, São Paulo, Brazil.

Background: Nearly all individuals with Alzheimer's disease (AD) develop neuropsychiatric symptoms (NPS). Lithium is a mood-stabilizer and is efficient in reducing disruptive behaviors in bipolar-disorder; this characteristic could be an opportunity to investigate the use of lithium in treating behavioral changes in AD.

Method: We tested lithium carbonate treatment in 3xTg-AD and age-matched Wild-type male mice (CEUA/PROCESS: 1605/2020; 4127240122).

View Article and Find Full Text PDF

Background: Exposures to hazardous noise causes irreversible injury to the structures of the inner ear, leading to changes in hearing and balance function with strong links to age-related cognitive impairment. While the role of noise-induced hearing loss in long-term health consequences, such as progression or development of Alzheimer's Disease (AD) has been suggested, the underlying mechanisms and behavioral and cognitive outcomes or therapeutic solutions to mitigate these changes remain understudied. This study aimed to characterize the association between blast exposure, hearing loss, and the progression of AD pathology, and determine the underlying mechanisms.

View Article and Find Full Text PDF

Background: Rodent models have been proved pivotal in Alzheimer's disease (AD) research. Nevertheless, the use of models that only recapitulate one aspect of AD neuropathology, and of early time points that might be excluding important features such as age-dependent inflammation and senescence, could hinder the development of effective AD therapeutics. Several tau immunotherapies are currently undergoing clinical trial.

View Article and Find Full Text PDF

Background: Late-onset Alzheimer's disease (LOAD) represents the majority of human AD cases, yet the availability of animal models that accurately reflect LOAD progression and pathology is limited. Traditional transgenic mouse models including 3xTg-AD and 5xFAD rely on supraphysiological overexpression of familial AD risk genes, failing to adequately replicate the disease progression observed in LOAD. Here, we present the first characterization of MODEL-AD1 (MAD1), a platform mouse developed by the Model Organism Development and Evaluation for Late-onset Alzheimer's Disease (MODEL-AD) Consortium.

View Article and Find Full Text PDF

Background: Alzheimer's Disease (AD) is a neurodegenerative proteinopathy in which Aβ can misfold and aggregate into seeds that structurally corrupt native proteins, mimicking a prion-like process. These amyloid aggregation and propagation processes are influenced by three factors: the origin of the Aβ seed, time of incubation and host. However, the mechanism underlying the differential effect of each factor is poorly known.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!