Background: According to data from the Alzheimer's Association, more than two-thirds of patients living with Alzheimer's disease (AD) in the United States are women. The interplay between aging and hormone depletion during menopause has been proposed as a leading cause, but the molecular underpinnings of this vulnerability are not fully understood. On the one hand, approaches that seek to supplement estrogens to rescue pre-menopausal hormonal levels have had contradictory outcomes in clinical trials. On the other hand, androgen effects in women in a neurodegeneration context are dramatically understudied. Furthermore, the number of XX chromosome individuals using androgens for sex-reassignment purposes has steadily increased. Whether androgens can regulate tau pathology and how is poorly understood, especially in the context of female physiology.
Method: We performed a dihydrotestosterone (DHT) supplementation paradigm in 5-6 month old P301S female mice and harvested brain tissue at 9 months of age. Pathological and biochemical tau markers, as well as androgen receptor content were evaluated in the hippocampus and cortex.
Result: Here, we report an exacerbation of tau pathology in tauP301S female mice treated with DHT, an androgen receptor (AR)-specific ligand, in the hippocampus, as evaluated by AT8 and MC-1 immunostaining. Furthermore, we report upregulation of AR almost exclusively in neurons upon DHT treatment, potentially mediating our observations.
Conclusion: Our results implicate AR activation in females as a potential risk factor for tau pathology. Overall, the AD field will benefit from a more thorough understanding of neurodegeneration in women and transmasculine individuals, facilitating the identification of different risk and protection factor, paving the way to the development of novel and targeted therapies, and better addressing the health issues of our diverse society.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/alz.091965 | DOI Listing |
Commun Biol
January 2025
Division of Geriatrics, Department of Medicine, SMPH, University of Wisconsin-Madison, Madison, WI, USA.
Changes in brain mitochondrial metabolism are coincident with functional decline; however, direct links between the two have not been established. Here, we show that mitochondrial targeting via the adiponectin receptor activator AdipoRon (AR) clears neurofibrillary tangles (NFTs) and rescues neuronal tauopathy-associated defects. AR reduced levels of phospho-tau and lowered NFT burden by a mechanism involving the energy-sensing kinase AMPK and the growth-sensing kinase GSK3b.
View Article and Find Full Text PDFCell Rep
December 2024
School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA. Electronic address:
Alzheimer's disease (AD) diagnosis relies on the presence of extracellular β-amyloid (Aβ) and intracellular hyperphosphorylated tau (p-tau). Emerging evidence suggests a potential link between AD pathologies and infectious agents, with herpes simplex virus 1 (HSV-1) being a leading candidate. Our investigation, using metagenomics, mass spectrometry, western blotting, and decrowding expansion pathology, detects HSV-1-associated proteins in human brain samples.
View Article and Find Full Text PDFNeurobiol Aging
December 2024
Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Pharmacology Department, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Epidemiology Doctoral Program, School of Medicine, Vanderbilt University, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA. Electronic address:
We have identified FLT1 as a protein that changes during Alzheimer's disease (AD) whereby higher brain protein levels are associated with more amyloid, more tau, and faster longitudinal cognitive decline. Given FLT1's role in angiogenesis and immune activation, we hypothesized that FLT1 is upregulated in response to amyloid pathology, driving a vascular-immune cascade resulting in neurodegeneration and cognitive decline. We sought to determine (1) if in vivo FLT1 levels (CSF and plasma) associate with biomarkers of AD neuropathology or differ between diagnostic staging in an aged cohort enriched for early disease, and (2) whether FLT1 expression interacts with amyloid on downstream outcomes, such as phosphorylated tau levels and cognitive performance.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Anesthesiology & Perioperative Medicine, University of Rochester, Rochester, New York, United States of America.
Neurodegenerative diseases are often characterized by mitochondrial dysfunction. In Alzheimer's disease, abnormal tau phosphorylation disrupts mitophagy, a quality control process through which damaged organelles are selectively removed from the mitochondrial network. The precise mechanism through which this occurs remains unclear.
View Article and Find Full Text PDFInflammopharmacology
January 2025
Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, ElKasr Elaini Street, Cairo, 11562, Egypt.
The currently approved drugs for Alzheimer's disease (AD) are only for symptomatic treatment in the early stages of the disease but they could not halt the neurodegeneration, additionally, the safety profile of the recently developed immunotherapy is a big issue. This review aims to explain the importance of the drugs repurposing technique and strategy to develop therapy for AD. We illustrated the biological alterations in the pathophysiology of AD including the amyloid pathology, the Tau pathology, oxidative stress, mitochondrial dysfunction, neuroinflammation, glutamate-mediated excitotoxicity, insulin signaling impairment, wingless-related integration site/β-catenin signaling, and autophagy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!