Background: The microtubule-associated protein tau is the most commonly misfolded protein in neurodegenerative disorders including Alzheimer's disease and other related tauopathies. These neurological illnesses are hypothesized to share a common mechanism of disease progression, where pathogenic aggregates or 'seeds' of the tau protein function as templates promoting misfolding of functional, soluble tau protein. Under this premise, therapeutic strategies that modulate the seeding cascade, have high potential to interfere with the disease process.

Method: While increasing evidence is emerging that tau pathology progression is based on seeding and spreading mechanisms reminiscent of prion protein pathology, an in-depth understanding of the cellular pathways and cofactors that drive disease progression is, however, still lacking. In order to identify tau seeding modulators, a previously described HEK293T biosensor cell line was applied, able to sensitively detect tau seeding. To understand the self-propagation process, I exploited this cell model to performed a pooled genome-wide loss-of-function CRISPR screen, allowing the identification of proteins that robustly influence tau seeding.

Result: Amongst the top hits were many genes involved in autophagy and specifically autophagosome formation. Building on these insights, I am working towards a mechanistic understanding how the loss of function of the ATG genes impacts tau seeding in mammalian cells and in a Drosophila melanogaster model.

Conclusion: Together, my in vitro and in vivo studies are starting to unravel the molecular details of the interplay between tau seeding and autophagy. These studies have the ability to reveal novel strategies to reduce the toxicity of tau aggregates by stimulating the activity of the autophagic machinery. Research approaches addressing tau in general, and tau seeding more specifically, have enormous potential to provide highly innovative, disease-modifying first-in-class therapeutics for AD. References 1) Holmes BB et al. (2014) "Proteopathic tau seeding predicts tauopathy in vivo. Proc Natl Acad Sci USA. 111: E4376-E4385 2) Doench JG et al. (2016) "Optimized sgRNA design to maximise activity and minimise off-target effects of CRISPR-Cas9." Nat. Biotechnol. 34: 184-191.

Download full-text PDF

Source
http://dx.doi.org/10.1002/alz.089660DOI Listing

Publication Analysis

Top Keywords

tau seeding
24
tau
13
disease progression
8
tau protein
8
seeding
8
protein
5
basic science
4
science pathogenesis
4
pathogenesis background
4
background microtubule-associated
4

Similar Publications

Background: Heterogeneity in the progression of clinical dementia poses a significant challenge, impeding the effectiveness of current therapies for Alzheimer's disease (AD). To decipher the molecular mechanisms governing heterogeneity in AD progression that remains a critical knowledge gap precluding rational therapeutic design, we investigated the biochemical and biophysical properties of tau present in the inferior temporal gyrus (ITG) and prefrontal cortex (PFC) brain regions of AD patients who had varying disease progression rates. To explore gene expression changes in the ITG which are associated with tau pathology and cognitive decline, we used RNA sequencing for molecular characterization of patients displaying tau and clinical heterogeneity.

View Article and Find Full Text PDF

Background: A recent case report described an individual who was a homozygous carrier of the APOE3 Christchurch (APOE3ch) mutation and resistant to autosomal dominant Alzheimer's Disease (AD) caused by a PSEN1-E280A mutation. Whether APOE3ch contributed to the protective effect remains unclear.

Method: We generated a humanized APOE3ch knock-in mouse and crossed it to an amyloid-β (Aβ) plaque-depositing model.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, Shanghai, China.

Background: Pathological tau plays critical roles in many neurodegenerative diseases (NDD), including Alzheimer's disease (AD). However, the mechanisms underlying the initial tau pathogenesis are largely unknown. Extensive tau pathology has been observed in the brains with chronic traumatic encephalopathy (CTE), suggesting repeated traumatic brain injury (rTBI) correlates with tau pathogenesis.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.

Article Synopsis
  • Asymptomatic Alzheimer's disease (AsymAD) is characterized by the presence of Alzheimer's pathology in individuals who maintain cognitive function, showing lower neuroinflammation compared to symptomatic Alzheimer's disease cases.
  • Research using postmortem brain samples revealed that AsymAD subjects have unique characteristics such as enriched core plaques and reduced tau aggregation, along with increased microglial activity around amyloid plaques.
  • The study suggests that the composition of the plaque microenvironment, particularly enhanced actin-based motility pathways in microglia, may play a key role in the resilience to Alzheimer's pathology and cognitive decline in AsymAD individuals.
View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Purdue University, Lafayette, IN, USA.

Background: Alzheimer's disease (AD) is the leading cause of dementia, affecting 50 million people globally. Current AD animal models mainly focus on familial or inherited AD. These models often carry the APP and PSEN gene mutations from familial AD patients, or introduce microtubule-associated protein tau (MAPT) mutations, which can cause frontotemporal dementia but are not linked to AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!