Latent fingerprints (LFPs) are invisible impressions that need to be developed before being used for criminal investigation; however, existing fingerprint visualization techniques face challenges, such as complex preparation and poor contrast. To advance practical fingerprint detection, green-emissive micron-sized curcumin/kaolin composites were synthesized a facile and cost-effective one-step physical cross-linking method, which exhibited unprecedented performance in developing diversified marks, including LFPs, knuckle prints, palm prints, and footprints, with clear three-level details on various substrates. Notably, the powders successfully developed LFPs that were aged for 30 days and even up to 100 days, meeting the stringent requirements for comprehensive forensic application. Afterward, a novel method, termed Fingerprint Fluorescence Intensity Ratio (FFIR), was developed to quantify the contrast between fingerprint signals and background noise and to compare the efficacy of full-color developing agents. Compared with the existing grayscale conversion strategy, the proposed FFIR method achieved tunable multi-color fingerprint image enhancement for the first time, which helped to eliminate background fluorescence interference and improved visual perception. The feasibility of FFIR and its sensitivity in tracking image capture parameters were demonstrated by the established mathematical model. Hence, the newly synthesized modified composites and the mathematical model-validated method demonstrate profound practical significance in comprehensive fingerprint imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4an01395fDOI Listing

Publication Analysis

Top Keywords

fingerprint imaging
8
fingerprint
7
curcumin/kaolin composite
4
composite advanced
4
advanced latent
4
latent fingerprint
4
imaging fluorescence
4
fluorescence quantification
4
quantification latent
4
latent fingerprints
4

Similar Publications

Latent fingerprints (LFPs) are invisible impressions that need to be developed before being used for criminal investigation; however, existing fingerprint visualization techniques face challenges, such as complex preparation and poor contrast. To advance practical fingerprint detection, green-emissive micron-sized curcumin/kaolin composites were synthesized a facile and cost-effective one-step physical cross-linking method, which exhibited unprecedented performance in developing diversified marks, including LFPs, knuckle prints, palm prints, and footprints, with clear three-level details on various substrates. Notably, the powders successfully developed LFPs that were aged for 30 days and even up to 100 days, meeting the stringent requirements for comprehensive forensic application.

View Article and Find Full Text PDF
Article Synopsis
  • MR fingerprinting (MRF) is an innovative technique for measuring MR relaxometry with high precision, but its complex data requirements hinder its widespread use.
  • A deep learning (DL) network, specifically a U-Net, was created to synthesize MRF signals from regular magnitude-only MRI data collected from 37 volunteers, comparing the results with actual acquired MRF signals.
  • The study found strong concordance between synthesized and actual MRF data, indicating that DL can enable quantitative relaxometry without the need for specialized MRF pulse sequences.
View Article and Find Full Text PDF

Machine-learning crystal size distribution for volcanic stratigraphy correlation.

Sci Rep

December 2024

Centre for Ore Deposit and Earth Sciences, School of Natural Sciences, University of Tasmania, Hobart, Australia.

Volcanic stratigraphy reconstruction is traditionally based on qualitative facies analysis complemented by geochemical analyses. Here we present a novel technique based on machine learning identification of crystal size distribution to quantitatively fingerprint lavas, shallow intrusions and coarse lava breccias. This technique, based on a simple photograph of a rock (or core) sample, is complementary to existing methods and allows another strategy to identify and compare volcanic rocks for stratigraphic correlation.

View Article and Find Full Text PDF

Using Fourier Transform Infrared spectroscopy (FTIR), it is possible to show chemical composition of materials and / or profile chemical changes occurring in tissues, cells, and body fluids during onset and progression of diseases. For diagnostic application, the use of blood would be the most appropriate in biospectroscopy studies since, (i) it is easily accessible and, (ii) enables frequent analyses of biochemical changes occurring in pathological states. At present, different studies have investigated potential of serum, plasma and sputum being alternative biofluids for lung cancer detection using FTIR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!