X-ray diffraction (XRD) has evolved significantly since its inception, becoming a crucial tool for material structure characterization. Advancements in theory, experimental techniques, diffractometers and detection technology have led to the acquisition of highly accurate diffraction patterns, surpassing previous expectations. Extracting comprehensive information from these patterns necessitates different models due to the influence of both electron density and thermal motion on diffracted beam intensity. While electron-density modelling has seen considerable progress [e.g. the Hansen-Coppens multipole model and Hirshfeld Atom Refinement (HAR)], the treatment of thermal motion has remained largely unchanged. We have developed a novel method that combines the strengths of the advanced charge-density models [Aspherical Atom Models (AAMs), such as HAR or the Transferable Aspherical Atom Model (TAAM)] and the thermal motion model (normal modes refinement, NoMoRe). We denote this approach AAM_NoMoRe, wherein instead of refining routine anisotropic displacement parameters (ADPs) against single-crystal X-ray diffraction data, we refine the frequencies obtained from periodic density functional theory (DFT) calculations. In this work, we demonstrate the effectiveness of this model by presenting its application to model compounds, such as alanine, xylitol, naphthalene and glycine polymorphs, highlighting the influence of our method on the H-atom positions and shape of their ADPs, which are comparable with neutron data. We observe a significant decrease in the similarity index for H-atom ADPs after AAM_NoMoRe in comparison to only AAM, aligning more closely with neutron data. Due to the use of aspherical form factors (AAM), our approach demonstrates better fitting performance, as indicated by consistently lower wR2 values compared to the Independent Atom Model (IAM) refinement and a significant decrease compared to the traditional NoMoRe model. Furthermore, we present the estimation of a key thermodynamic property, namely, heat capacity, and demonstrate its alignment with experimental calorimetric data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1107/S2052252524011862 | DOI Listing |
Chem Asian J
January 2025
Kanagawa University, Department of Chemistry, JAPAN.
Thermoelectric properties of undoped crystals of dibenzo[g,p]chrysene (DBC), deuterated DBC (DBC-d16), and 2,10-dimethyl-DBC (DBC-Me2) have been studied to obtain some insights into the relationship between the structural parameters of materials and the giant Seebeck effect. X-ray crystallography showed one-dimensional columnar packing with the interlayer distances (d) for DBC-d16, DBC, and DBC-Me2 were 3.78 Å, 3.
View Article and Find Full Text PDFIUCrJ
January 2025
Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw, 02-093, Poland.
X-ray diffraction (XRD) has evolved significantly since its inception, becoming a crucial tool for material structure characterization. Advancements in theory, experimental techniques, diffractometers and detection technology have led to the acquisition of highly accurate diffraction patterns, surpassing previous expectations. Extracting comprehensive information from these patterns necessitates different models due to the influence of both electron density and thermal motion on diffracted beam intensity.
View Article and Find Full Text PDFACS Sens
January 2025
Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, United States.
Bioanalytical sensors are adept at quantifying target analytes from complex sample matrices with high sensitivity, but their multiplexing capacity is limited. Conversely, analytical separations afford great multiplexing capacity but typically require analyte labeling to increase sensitivity. Here, we report the development of a separation-based sensor to sensitively quantify unlabeled polysaccharides using particle motion tracking within a microfluidic electrophoresis platform.
View Article and Find Full Text PDFNano Lett
January 2025
Departments of Chemistry, and Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States.
A-site cations in ABX metal halide perovskites do not contribute to the frontier electronic states. They influence optoelectronic properties indirectly through interaction with the BX sublattice. By systematically investigating correlated motions of Cs cations and the PbX lattice (X = Cl, Br, I), we demonstrate that the interaction between the two subsystems depends on electronegativity and size of the X-site anion.
View Article and Find Full Text PDFSci Rep
December 2024
Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Strasse 40, 34132, Kassel, Germany.
The ultrafast ionic dynamics in solids induced by intense femtosecond laser excitation are controlled by two fundamentally different yet interrelated phenomena. First, the substantial generation of hot electron-hole pairs by the laser pulse modifies the interatomic bonding strength and characteristics, inducing nonthermal ionic motion. Second, incoherent electron-ion collisions facilitate thermal equilibration between electrons and ions, achieving a uniform temperature on a picosecond timescale.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!