Multispecies Cohesion: Humans, Machinery, AI, and Beyond.

Phys Rev Lett

Physics Department, George Washington University, Washington, DC 20052, USA.

Published: December 2024

The global chaos caused by the July 19, 2024 technology meltdown highlights the need for a theory of what large-scale cohesive behaviors-dangerous or desirable-could suddenly emerge from future systems of interacting humans, machinery, and software, including artificial intelligence; when they will emerge; and how they will evolve and be controlled. Here, we offer answers by introducing an aggregation model that accounts for the interacting entities' inter- and intraspecies diversities. It yields a novel multidimensional generalization of existing aggregation physics. We derive exact analytic solutions for the time to cohesion and growth of cohesion for two species, and some generalizations for an arbitrary number of species. These solutions reproduce-and offer a microscopic explanation for-an anomalous nonlinear growth feature observed in various current real-world systems. Our theory suggests good and bad "surprises" will appear sooner and more strongly as humans, machinery, artificial intelligence, and so on interact more, but it also offers a rigorous approach for understanding and controlling this.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.133.247401DOI Listing

Publication Analysis

Top Keywords

humans machinery
12
artificial intelligence
8
multispecies cohesion
4
cohesion humans
4
machinery global
4
global chaos
4
chaos caused
4
caused july
4
july 2024
4
2024 technology
4

Similar Publications

New approaches to secondary metabolite discovery from anaerobic gut microbes.

Appl Microbiol Biotechnol

January 2025

Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.

The animal gut microbiome is a complex system of diverse, predominantly anaerobic microbiota with secondary metabolite potential. These metabolites likely play roles in shaping microbial community membership and influencing animal host health. As such, novel secondary metabolites from gut microbes hold significant biotechnological and therapeutic interest.

View Article and Find Full Text PDF

Profiling Tel1 Signaling Reveals a Non-Canonical Motif Targeting DNA Repair and Telomere Control Machineries.

J Biol Chem

January 2025

Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA. Electronic address:

The stability of the genome relies on Phosphatidyl Inositol 3-Kinase-related Kinases (PIKKs) that sense DNA damage and trigger elaborate downstream signaling responses. In S. cerevisiae, the Tel1 kinase (ortholog of human ATM) is activated at DNA double strand breaks (DSBs) and short telomeres.

View Article and Find Full Text PDF

Improving physical balance among older workers is essential for preventing falls in workplace. We aimed to elucidate the age-related decline in one-leg standing time with eyes closed, an indicator of static balance, and mitigating influence of daily walking habits on this decline in Japan. This longitudinal study involved 249 manufacturing workers, including seven females, aged 20-66 years engaged in tasks performed at height in the aircraft and spacecraft machinery industry.

View Article and Find Full Text PDF

Ubiquitin-A structural perspective.

Mol Cell

January 2025

Ubiquitin Signalling Division, WEHI, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia. Electronic address:

The modification of proteins and other biomolecules with the small protein ubiquitin has enthralled scientists from many disciplines for decades, creating a broad research field. Ubiquitin research is particularly rich in molecular and mechanistic understanding due to a plethora of (poly)ubiquitin structures alone and in complex with ubiquitin machineries. Furthermore, due to its favorable properties, ubiquitin serves as a model system for many biophysical and computational techniques.

View Article and Find Full Text PDF

Tail Anchored protein insertion mediated by CAML and TRC40 links to neuromuscular function in mice.

PLoS Genet

January 2025

Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 1st St. SW, Rochester, Minnesota 55905, United States of America.

Motor neuron diseases, such as amyotrophic lateral sclerosis (ALS) and progressive bulbar palsy, involve loss of muscle control resulting from death of motor neurons. Although the exact pathogenesis of these syndromes remains elusive, many are caused by genetically inherited mutations. Thus, it is valuable to identify additional genes that can impact motor neuron survival and function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!