A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Flexible Control of Chiral Superconductivity in Optically Driven Nodal Point Superconductors with Antiferromagnetism. | LitMetric

Flexible Control of Chiral Superconductivity in Optically Driven Nodal Point Superconductors with Antiferromagnetism.

Phys Rev Lett

Institute for Structure and Function and Department of Physics and Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing University, Chongqing 400044, People's Republic of China and Center of Quantum Materials and Devices, Chongqing University, Chongqing 400044, People's Republic of China.

Published: December 2024

Recent studies have attracted widespread attention on magnet-superconductor hybrid systems with emergent topological superconductivity. Here, we present the Floquet engineering of realistic two-dimensional topological nodal-point superconductors that are composed of antiferromagnetic monolayers in proximity to an s-wave superconductor. We show that Floquet chiral topological superconductivity arises due to light-induced breaking of the effective time-reversal symmetry. More strikingly, we find that the Floquet chiral topological superconducting phases can be flexibly controlled by irradiating elliptically polarized light, with the photon-dressed quasienergy spectrum carrying different Chern numbers. Such optically switchable topological transitions arise from the simultaneous creations (or annihilations) of valley pairs, which are attributed to the intertwining with magnetic symmetry, superconductivity, and topology. Our findings provide a feasible approach for achieving the Floquet chiral topological superconductivity with flexible tunability, which would draw extensive attention in experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.133.246606DOI Listing

Publication Analysis

Top Keywords

topological superconductivity
12
floquet chiral
12
chiral topological
12
topological
6
superconductivity
5
flexible control
4
chiral
4
control chiral
4
chiral superconductivity
4
superconductivity optically
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!