Possible Sliding Regimes in Twisted Bilayer WTe_{2}.

Phys Rev Lett

Department of Physics, Stanford University, Stanford, California 94305, USA.

Published: December 2024

Inspired by the observation of increasingly one-dimensional (1D) behavior with decreasing temperature in small-angle twisted bilayers of WTe_{2} (tWTe_{2}), we theoretically explore the exotic sliding regimes that could be realized in tWTe_{2}. At zero displacement field, while hole-doped tWTe_{2} can be thought of as an array of weakly coupled conventional two-flavor 1D electron gases (1DEGs), the electron-doped regime is equivalent to coupled four-flavor 1DEGs, due to the presence of an additional "valley" degree of freedom. In the decoupled limit, the electron-doped system can thus realize phases with a range of interesting ordering tendencies, including 4k_{F} charge-density-wave and charge-4e superconductivity. Dimensional crossovers and cross-wire transport due to interwire couplings of various kinds are also discussed. We find that a sliding Luther-Emery liquid with small interwire couplings is probably most consistent with current experiments on hole-doped tWTe_{2}.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.133.246501DOI Listing

Publication Analysis

Top Keywords

sliding regimes
8
hole-doped twte_{2}
8
interwire couplings
8
regimes twisted
4
twisted bilayer
4
bilayer wte_{2}
4
wte_{2} inspired
4
inspired observation
4
observation increasingly
4
increasingly one-dimensional
4

Similar Publications

Interfacial Dripping Faucet: Generating Monodisperse Liquid Lenses.

Phys Rev Lett

December 2024

Carlos III University of Madrid, Thermal and Fluids Engineering Department, Avenida de la Universidad, 30 (Sabatini building), 28911 Leganés (Madrid), Spain.

We present a surface analog to a dripping faucet, where a viscous liquid slides down an immiscible meniscus. Periodic pinch-off of the dripping filament is observed, generating a succession of monodisperse floating lenses. We show that this interfacial dripping faucet can be described analogously to its single-phase counterpart, replacing surface tension by the spreading coefficient, and even undergoes a transition to a jetting regime.

View Article and Find Full Text PDF

Charge transport in materials has an impact on a wide range of devices based on semiconductor, battery, or superconductor technology. Charge transport in sliding charge density waves (CDW) differs from all others in that the atomic lattice is directly involved in the transport process. To obtain an overall picture of the structural changes associated to the collective transport, the large coherent x-ray beam generated by an x-ray free-electron laser (XFEL) source was used.

View Article and Find Full Text PDF

Possible Sliding Regimes in Twisted Bilayer WTe_{2}.

Phys Rev Lett

December 2024

Department of Physics, Stanford University, Stanford, California 94305, USA.

Inspired by the observation of increasingly one-dimensional (1D) behavior with decreasing temperature in small-angle twisted bilayers of WTe_{2} (tWTe_{2}), we theoretically explore the exotic sliding regimes that could be realized in tWTe_{2}. At zero displacement field, while hole-doped tWTe_{2} can be thought of as an array of weakly coupled conventional two-flavor 1D electron gases (1DEGs), the electron-doped regime is equivalent to coupled four-flavor 1DEGs, due to the presence of an additional "valley" degree of freedom. In the decoupled limit, the electron-doped system can thus realize phases with a range of interesting ordering tendencies, including 4k_{F} charge-density-wave and charge-4e superconductivity.

View Article and Find Full Text PDF

Sliding-Induced Rehydration in Hydrogels for Restoring Lubrication and Anticreeping Capability.

J Phys Chem Lett

November 2024

State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.

Fluid exudation in cartilage under normal loading can be counteracted by a sliding-induced rehydration phenomenon, which has a hydrodynamic origin related to a wedge effect at the contact inlet. Similar to cartilage, hydrogels also exhibit tribological rehydration properties, and we mimic this phenomenon to restore hydration lubrication and overcome creeping. It occurs within a specific velocity range and is mainly dependent on the applied load and hydrogel network structures.

View Article and Find Full Text PDF

The diffusion and interaction dynamics of charged nanoparticles (NPs) within charged polymer networks are crucial for understanding various biological and biomedical applications. Using a combination of coarse-grained molecular dynamics simulations and experimental diffusion studies, we investigate the effects of the NP size, relative surface charge density (ζ), and concentration on the NP permeation length and time. We propose a scaling law for the relative diffusion of NPs with respect to concentration and ζ, highlighting how these factors influence the NP movement within the network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!