A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Heterogeneous Cluster Energetics and Nonlinear Thermodynamic Response in Supercritical Fluids. | LitMetric

Heterogeneous Cluster Energetics and Nonlinear Thermodynamic Response in Supercritical Fluids.

Phys Rev Lett

Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA.

Published: December 2024

Microstructural heterogeneities arising from molecular clusters directly affect the nonlinear thermodynamic properties of supercritical fluids. We present a physical model to elucidate the relation between energy exchange and heterogeneous cluster dynamics during the transition from liquidlike to gaslike conditions. By analyzing molecular-dynamics data and employing physical principles, the model considers contributions from three key processes, namely, changing cluster density, cluster separation, and transfer of molecules between clusters. We show that the proposed model is consistent with the energetics at subcritical conditions and can be used to explain the nonlinear behavior of thermodynamic response functions, including the peak in the isobaric heat capacity.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.133.248001DOI Listing

Publication Analysis

Top Keywords

heterogeneous cluster
8
nonlinear thermodynamic
8
thermodynamic response
8
supercritical fluids
8
cluster energetics
4
energetics nonlinear
4
response supercritical
4
fluids microstructural
4
microstructural heterogeneities
4
heterogeneities arising
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!