Measuring bipartite fluctuations of a conserved charge, such as the particle number, is a powerful approach to understanding quantum systems. When the measured region has sharp corners, the bipartite fluctuation receives an additional contribution known to exhibit a universal angle dependence in 2D isotropic and uniform systems. Here we establish that, for generic lattice systems of interacting particles, the corner charge fluctuation is directly related to quantum geometry. We first provide a practical scheme to isolate the corner contribution on lattices and analytically prove that its angle dependence in the "small-angle limit" measures exclusively the integrated quantum metric. A model of a compact obstructed atomic insulator is introduced to illustrate this effect analytically, while numerical verification for various Chern insulator models further demonstrate the experimental relevance of the corner charge fluctuation in a finite-size quantum simulator as a probe of quantum geometry. Last but not least, for free fermions, we unveil an intimate connection between quantum geometry and quantum information through the lens of corner entanglement entropies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.133.246603 | DOI Listing |
Phys Rev Lett
December 2024
Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA.
We investigate the thermoelectric response of an Abrikosov vortex in type-II superconductors in the deep quantum limit. We consider two thermoelectric geometries, a type-II superconductor-insulator-normal-metal (S-I-N) junction and a local scanning tunneling microscope (STM)-tip normal metal probe over the superconductor. We exploit the strong breaking of particle-hole symmetry in vortex-bound states at subgap energies within the superconducting vortex to realize a giant thermoelectric response in the presence of fluxons.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Department of Physics, Princeton University, Princeton, New Jersey 08544, USA.
Measuring bipartite fluctuations of a conserved charge, such as the particle number, is a powerful approach to understanding quantum systems. When the measured region has sharp corners, the bipartite fluctuation receives an additional contribution known to exhibit a universal angle dependence in 2D isotropic and uniform systems. Here we establish that, for generic lattice systems of interacting particles, the corner charge fluctuation is directly related to quantum geometry.
View Article and Find Full Text PDFNat Commun
January 2025
TCM Group, Cavendish Laboratory, Department of Physics, Cambridge, UK.
We report on a class of gapped projected entangled pair states (PEPS) with non-trivial Euler topology motivated by recent progress in band geometry. In the non-interacting limit, these systems have optimal conditions relating to saturation of quantum geometrical bounds, allowing for parent Hamiltonians whose lowest bands are completely flat and which have the PEPS as unique ground states. Protected by crystalline symmetries, these states evade restrictions on capturing tenfold-way topological features with gapped PEPS.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemistry, University of Missouri, Columbia, MO 65211, USA.
We present state-to-state differential cross sections for rotationally inelastic collisions of vibrationally excited NO XΠ ( = 9) with Ar using a near-counterpropagating molecular beam geometry. These were obtained using the stimulated emission pumping technique coupled with velocity map imaging. Collision energies well over ∼1 eV were achieved and rotational excitations up to ∼Δ = 60 recorded for the first time for inelastic collisions.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
Oxide materials with a non-centrosymmetric structure exhibit bulk photovoltaic effect (BPVE) but with a low cell efficiency. Over the past few years, relatively larger BPVE coefficients have been reported for two-dimensional (2D) layers and stacks with asymmety-induced spontaneous polarization. Here, we report a crucial breakthrough in boosting the BPVE in 3R-MoS by adopting edge contact (EC) geometry using bismuth semimetal electrode.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!