Superconductivity from Domain Wall Fluctuations in Sliding Ferroelectrics.

Phys Rev Lett

Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.

Published: December 2024

Bilayers of two-dimensional van der Waals materials that lack an inversion center can show a novel form of ferroelectricity, where certain stacking arrangements of the two layers lead to an interlayer polarization. Under an external out-of-plane electric field, a relative sliding between the two layers can occur, accompanied by an interlayer charge transfer and a ferroelectric switching. We show that the domain walls that mediate ferroelectric switching are a locus of strong attractive interactions between electrons. The attraction is mediated by the ferroelectric domain wall fluctuations, effectively driven by the soft interlayer shear phonon. We comment on the possible relevance of this attraction mechanism to the recent observation of an interplay between sliding ferroelectricity and superconductivity in bilayer T_{d}-MoTe_{2}. We also discuss the possible role of this mechanism in the superconductivity of moiré bilayers.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.133.246001DOI Listing

Publication Analysis

Top Keywords

domain wall
8
wall fluctuations
8
ferroelectric switching
8
superconductivity domain
4
fluctuations sliding
4
sliding ferroelectrics
4
ferroelectrics bilayers
4
bilayers two-dimensional
4
two-dimensional van
4
van der
4

Similar Publications

Superconductivity from Domain Wall Fluctuations in Sliding Ferroelectrics.

Phys Rev Lett

December 2024

Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.

Bilayers of two-dimensional van der Waals materials that lack an inversion center can show a novel form of ferroelectricity, where certain stacking arrangements of the two layers lead to an interlayer polarization. Under an external out-of-plane electric field, a relative sliding between the two layers can occur, accompanied by an interlayer charge transfer and a ferroelectric switching. We show that the domain walls that mediate ferroelectric switching are a locus of strong attractive interactions between electrons.

View Article and Find Full Text PDF

Transglutaminases (TGases) are enzymes highly conserved among prokaryotic and eukaryotic organisms, where their role is to catalyze protein cross-linking. One of the putative TGases of has previously been shown to be localized to the cell wall. Based on sequence similarity we were able to identify six more genes annotated as putative TGases and show that these seven genes group together in phylogenetic analysis.

View Article and Find Full Text PDF

Sucrose synthase gene family in common bean during pod filling subjected to moisture restriction.

Front Plant Sci

December 2024

Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)-Facultad de Ciencias Químicas, Universidad Veracruzana, Orizaba, Veracruz, Mexico.

Article Synopsis
  • Drought significantly impacts leaf photosynthesis in common beans, but some cultivars compensate by using pod walls as carbohydrate reservoirs for seed filling.
  • A genome-wide analysis of the sucrose synthase (SUS) gene family revealed 7 genes with varying structures and evolutionary relationships among plant species.
  • Experiments showed increased SUS activity and higher fructose and sucrose levels in pods under water restriction, indicating enhanced transport and metabolic processes during seed development under drought conditions.
View Article and Find Full Text PDF

Introduction: In-stent restenosis remains a significant challenge in coronary artery interventions. This study aims to explore the relationship between exercise intensity and stent design, focusing on the coupled response of the stent structure and hemodynamics at different exercise intensities.

Methods: A coupled balloon-stent-plaque-artery model and a fluid domain model reflecting structural deformation were developed to investigate the interaction between coronary stents and stenotic vessels, as well as their impact on hemodynamics.

View Article and Find Full Text PDF

High-fidelity computational fluid dynamics modeling to simulate perfusion through a bone-mimicking scaffold.

Comput Biol Med

December 2024

University of Colorado Boulder, Paul M. Rady Department of Mechanical Engineering, Boulder, CO, USA; Biofrontiers Institute, University of Colorado, Boulder, CO, 80309, USA. Electronic address:

Breast cancer cells sense shear stresses in response to interstitial fluid flow in bone and induce specific biological responses. Computational fluid dynamics models have been instrumental in estimating these shear stresses to relate the cell mechanoresponse to exact mechanical signals, better informing experiment design. Most computational models greatly simplify the experimental and cell mechanical environments for ease of computation, but these simplifications may overlook complex cell-substrate mechanical interactions that significantly change shear stresses experienced by cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!