Six strains (DMKU-SG26, DMKU-SG42, DMKU-SYM22, DMKU-RG41, DMKU-RX317 and DMKU-RGM25) representing a novel basidiomycetous yeast species were isolated from leaf surfaces of mangrove plants collected in Thailand. Pairwise sequence analysis indicated that the six strains either had identical nucleotide substitution in the D1/D2 domains of the large subunit (LSU) rRNA gene sequences or differed by one to three nucleotide(s). They also had identical or differed by one to five nucleotide substitution(s) in the internal transcribed spacer (ITS) regions. blastn searches of the GenBank database revealed that the six strains were closely related to the holotype of type strains of , , , and , but with 6-15 (1.14-2.48%) and 16-26 (5.4-8.8%) nucleotide substitutions in the D1/D2 domains of the LSU rRNA gene and the ITS regions, respectively. Phylogenetic analysis based on the concatenated sequences of the ITS regions and D1/D2 domains of the LSU rRNA gene showed that these strains are placed in the clade but were at a distinctly different position from the other recognized species of the genus. Based on the phylogenetic analysis and phenotypic characteristics, these six strains are a novel species of the genus , for which the name sp. nov. is proposed to accommodate them. The holotype is TBRC 18499 and the ex-type culture is PYCC 10042 (=DMKU-SG26). The MycoBank number of the novel species is MB 855838.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/ijsem.0.006623 | DOI Listing |
Int J Syst Evol Microbiol
January 2025
Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea.
A novel yeast species, isolated from the bark of pine trees in Gyeongju, South Korea, and designated as KCTC 37304 (ex-type KACC 410729), is characterized by its genetic, morphological and physiological properties. Molecular phylogenetic analysis involving the D1/D2 domain of the 26S LSU rRNA gene and the internal transcribed spacer (ITS) region confirms that it belongs to the genus . In comparison to CBS:10065, the type strain of its closest relative, KCTC 37304 exhibits 8 nucleotide substitutions (~2.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
Six strains (DMKU-SG26, DMKU-SG42, DMKU-SYM22, DMKU-RG41, DMKU-RX317 and DMKU-RGM25) representing a novel basidiomycetous yeast species were isolated from leaf surfaces of mangrove plants collected in Thailand. Pairwise sequence analysis indicated that the six strains either had identical nucleotide substitution in the D1/D2 domains of the large subunit (LSU) rRNA gene sequences or differed by one to three nucleotide(s). They also had identical or differed by one to five nucleotide substitution(s) in the internal transcribed spacer (ITS) regions.
View Article and Find Full Text PDFMycoscience
September 2024
b Rakuto Kasei Industrial Co., Ltd.
Novel strains, JCM 35526 and 261-2C, were isolated from biofilm formed on a reverse osmosis membrane in the phosphate recovery system of a semiconductor factory. Morphological, biochemical, physiological, and chemotaxonomic analyses as well as sequence analysis of the concatenated internal transcribed spacer region and D1/D2 domains of the large subunit of the rRNA gene confirmed that strains JCM 35526 and 261-2C, were distinct from all currently known species. The holotype and isotype strains of the new species, which is named , are JCM 35526 and MUCL 58310, respectively.
View Article and Find Full Text PDFStud Mycol
December 2024
School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China.
More than 2 000 yeast strains isolated from 1 200 samples mostly collected from Tibet and Yunnan provinces in China were identified as 462 species according to the internal transcribed spacer including the 5.8S rDNA (ITS) and the D1/D2 domains of the large subunit rDNA (LSU) sequence analyses. Among them, 70 new basidiomycetous yeast species were proposed based on the multi-locus phylogenetic analyses including the D1/D2 domains, the ITS, the small subunit rDNA (SSU), the largest subunit of RNA polymerase II (), the second largest subunit of RNA polymerase II () and translation elongation factor 1-α (), as well as the phenotypic comparisons.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
December 2024
National Centre for Microbial Resource, National Centre for Cell Science, Pune 411007, Maharashtra, India.
The genus , known for its melanized, yeast-like appearance, includes a diverse group of fungi with significant implications across various fields. An isolate representing a novel species was identified within this genus from a ginger tuber from India, based on morphological characteristics and molecular phylogenetic analysis. Phylogenetic analysis of the D1/D2 domain of the 26S LSU rRNA gene, SSU rRNA gene and the internal transcribed spacer (ITS) region confirmed this strain as a new species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!