Proteins can be represented in different data forms, including sequence, structure, and surface, each of which has unique advantages and certain limitations. It is promising to fuse the complementary information among them. In this work, we propose a framework called ProteinF3S for enzyme function prediction that fuses the complementary information across protein sequence, structure, and surface. To achieve more effective fusion, we propose a multi-scale bidirectional fusion strategy between protein structure and surface, in which the hierarchical features of a surface encoder and a structure encoder interact with each other bidirectionally. Based on these interactions, more distinctive features can be obtained. After that, we achieve further fusion by concatenating the sequence features with the features containing structure and surface information, so that better performance can be achieved. To validate our method, we conduct extensive experiments on tasks including enzyme reaction classification and enzyme commission number prediction. Our method achieves new state-of-the-art performance and shows that fusing different forms of data is effective in enzyme function prediction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bib/bbae695 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697223 | PMC |
Acta Crystallogr C Struct Chem
January 2025
College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, People's Republic of China.
A new twofold interpenetrated 3D metal-organic framework (MOF), namely, poly[[μ-aqua-diaqua{μ-2,2'-[terephthaloylbis(azanediyl)]diacetato}barium(II)] dihydrate], {[Ba(CHNO)(HO)]·2HO}, (I), has been assembled through a combination of the reaction of 2,2'-[terephthaloylbis(azanediyl)]diacetic acid (TPBA, HL) with barium hydroxide and crystallization at low temperature. In the crystal structure of (I), the nine-coordinated Ba ions are bridged by two μ-aqua ligands and two carboxylate μ-O atoms to form a 1D loop-like Ba-O chain, which, together with the other two coordinated water molecules and μ-carboxylate groups, produces a rod-like secondary building unit (SBU). The resultant 1D polynuclear SBUs are further extended into a 3D MOF via the terephthalamide moiety of the ligand as a spacer.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
Since its discovery, carbon quantum dots (CDs) have been widely applied in cell imaging, drug delivery, biosensing, and photocatalysis due to their excellent water solubility, chemical stability, fluorescence stability biocompatibility, low toxicity, and preparation cost. However, the low fluorescence yield and poor surface structure limit the application of CDs. Heteroatom doping is considered an ideal method to improve CDs' optical and electrical properties.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Endodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia.
The preservation of the original configurations of root canals during endodontic preparation is crucial for treatment success. Nickel-titanium (NiTi) rotary systems have been refined to optimize canal shaping while minimizing iatrogenic errors. This study aimed to evaluate and compare the shaping efficacy of the novel R-Motion (RM) and the established WaveOne Gold (WG) systems using micro-computed tomography (micro-CT).
View Article and Find Full Text PDFMed Biol Eng Comput
January 2025
School of Medical Engineering, Department of Cardiology of The First Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
The research aims to investigate the mechanical response of footfalls at different velocities to understand the mechanism of heel injury and provide a scientific basis for the prevention and treatment of heel fractures. A three-dimensional solid model of foot drop was constructed using anatomical structures segmented from medical CT scans, including bone, cartilage, ligaments, plantar fascia, and soft tissues, and the impact velocities of the foot were set to be 2 m/s, 4 m/s, 6 m/s, 8 m/s, and 10 m/s. Explicit kinetic analysis methods were used to investigate the mechanical response of the foot landing with different speeds to explore the damage mechanism of heel bone at different impact velocities.
View Article and Find Full Text PDFSci Rep
January 2025
College of Mechanical Engineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou, 310014, Zhejiang Province, China.
To observe the chemical mechanical polishing (CMP) process at the atomic scale, reactive force field molecular dynamics (ReaxFF-MD) was employed to simulate the polishing of 6 H-SiC under three conditions: dry, pure water, and HO solution. This study examined the reactants on the surface of 6 H-SiC during the reaction in the HO solution, along with the dissociation and adsorption processes of HO and water molecules. The mechanisms for atom removal during the CMP process were elucidated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!